Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 11(1): 4337, 2020 08 28.
Article in English | MEDLINE | ID: mdl-32859897

ABSTRACT

Intracellular Na elevation in the heart is a hallmark of pathologies where both acute and chronic metabolic remodelling occurs. Here, we assess whether acute (75 µM ouabain 100 nM blebbistatin) or chronic myocardial Nai load (PLM3SA mouse) are causally linked to metabolic remodelling and whether the failing heart shares a common Na-mediated metabolic 'fingerprint'. Control (PLMWT), transgenic (PLM3SA), ouabain-treated and hypertrophied Langendorff-perfused mouse hearts are studied by 23Na, 31P, 13C NMR followed by 1H-NMR metabolomic profiling. Elevated Nai leads to common adaptive metabolic alterations preceding energetic impairment: a switch from fatty acid to carbohydrate metabolism and changes in steady-state metabolite concentrations (glycolytic, anaplerotic, Krebs cycle intermediates). Inhibition of mitochondrial Na/Ca exchanger by CGP37157 ameliorates the metabolic changes. In silico modelling indicates altered metabolic fluxes (Krebs cycle, fatty acid, carbohydrate, amino acid metabolism). Prevention of Nai overload or inhibition of Na/Camito may be a new approach to ameliorate metabolic dysregulation in heart failure.


Subject(s)
Cellular Reprogramming/physiology , Cytoplasm/metabolism , Heart Failure/metabolism , Myocardium/metabolism , Sodium/metabolism , Animals , Disease Models, Animal , Energy Metabolism , Gene Knock-In Techniques , Heart , Hypertrophy , Isolated Heart Preparation , Male , Metabolic Diseases/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Mitochondria/drug effects , Mitochondria/metabolism , Rats , Rats, Wistar , Sodium/blood , Sodium-Calcium Exchanger/drug effects , Thiazepines/pharmacology
2.
Basic Res Cardiol ; 113(4): 25, 2018 06 01.
Article in English | MEDLINE | ID: mdl-29858664

ABSTRACT

Remote ischaemic conditioning (RIC) is a promising method of cardioprotection, with numerous clinical studies having demonstrated its ability to reduce myocardial infarct size and improve prognosis. On the other hand, there are several clinical trials, in particular those conducted in the setting of elective cardiac surgery, that have failed to show any benefit of RIC. These contradictory data indicate that there is insufficient understanding of the mechanisms underlying RIC. RIC is now known to signal indiscriminately, protecting not only the heart, but also other organs. In particular, experimental studies have demonstrated that it is able to reduce infarct size in an acute ischaemic stroke model. However, the mechanisms underlying RIC-induced neuroprotection are even less well understood than for cardioprotection. The existence of bidirectional feedback interactions between the heart and the brain suggests that the mechanisms of RIC-induced neuroprotection and cardioprotection should be studied as a whole. This review, therefore, addresses the topic of the neural component of the RIC mechanism.


Subject(s)
Brain/metabolism , Cerebrovascular Disorders/prevention & control , Ischemic Preconditioning, Myocardial , Ischemic Preconditioning/methods , Myocardial Infarction/prevention & control , Myocardial Reperfusion Injury/prevention & control , Myocardium/metabolism , Neural Pathways/metabolism , Animals , Brain/pathology , Brain/physiopathology , Cerebrovascular Disorders/metabolism , Cerebrovascular Disorders/pathology , Cerebrovascular Disorders/physiopathology , Feedback, Physiological , Humans , Myocardial Infarction/metabolism , Myocardial Infarction/pathology , Myocardial Infarction/physiopathology , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/pathology , Myocardial Reperfusion Injury/physiopathology , Myocardium/pathology , Neural Pathways/pathology , Neural Pathways/physiopathology , Signal Transduction
3.
Cardiovasc Res ; 112(3): 669-676, 2016 12.
Article in English | MEDLINE | ID: mdl-27702763

ABSTRACT

AIMS: Although the nature of the humoral factor which mediates cardioprotection established by remote ischaemic conditioning (RIc) remains unknown, parasympathetic (vagal) mechanisms appear to play a critical role. As the production and release of many gut hormones is modulated by the vagus nerve, here we tested the hypothesis that RIc cardioprotection is mediated by the actions of glucagon-like peptide-1 (GLP-1). METHODS AND RESULTS: A rat model of myocardial infarction (coronary artery occlusion followed by reperfusion) was used. Remote ischaemic pre- (RIPre) or perconditioning (RIPer) was induced by 15 min occlusion of femoral arteries applied prior to or during the myocardial ischaemia. The degree of RIPre and RIPer cardioprotection was determined in conditions of cervical or subdiaphragmatic vagotomy, or following blockade of GLP-1 receptors (GLP-1R) using specific antagonist Exendin(9-39). Phosphorylation of PI3K/AKT and STAT3 was assessed. RIPre and RIPer reduced infarct size by ∼50%. In conditions of bilateral cervical or subdiaphragmatic vagotomy RIPer failed to establish cardioprotection. GLP-1R blockade abolished cardioprotection induced by either RIPre or RIPer. Exendin(9-39) also prevented RIPre-induced AKT phosphorylation. Cardioprotection induced by GLP-1R agonist Exendin-4 was preserved following cervical vagotomy, but was abolished in conditions of M3 muscarinic receptor blockade. CONCLUSIONS: These data strongly suggest that GLP-1 functions as a humoral factor of remote ischaemic conditioning cardioprotection. This phenomenon requires intact vagal innervation of the visceral organs and recruitment of GLP-1R-mediated signalling. Cardioprotection induced by GLP-1R activation is mediated by a mechanism involving M3 muscarinic receptors.


Subject(s)
Femoral Artery/surgery , Glucagon-Like Peptide 1/metabolism , Ischemic Preconditioning/methods , Myocardial Infarction/prevention & control , Myocardial Reperfusion Injury/prevention & control , Myocardium/metabolism , Vagus Nerve/physiopathology , Animals , Disease Models, Animal , Exenatide , Glucagon-Like Peptide 1/antagonists & inhibitors , Glucagon-Like Peptide-1 Receptor/drug effects , Glucagon-Like Peptide-1 Receptor/metabolism , Hormone Antagonists/pharmacology , Ligation , Male , Muscarinic Antagonists/pharmacology , Myocardial Infarction/metabolism , Myocardial Infarction/pathology , Myocardial Infarction/physiopathology , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/pathology , Myocardial Reperfusion Injury/physiopathology , Myocardium/pathology , Peptide Fragments/pharmacology , Peptides/pharmacology , Phosphatidylinositol 3-Kinase/metabolism , Phosphorylation , Proto-Oncogene Proteins c-akt/metabolism , Rats, Sprague-Dawley , Receptor, Muscarinic M3/drug effects , Receptor, Muscarinic M3/metabolism , STAT3 Transcription Factor/metabolism , Signal Transduction , Vagotomy , Vagus Nerve/drug effects , Vagus Nerve/surgery , Venoms/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...