Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Antioxidants (Basel) ; 12(8)2023 Jul 31.
Article in English | MEDLINE | ID: mdl-37627536

ABSTRACT

Inflammation is a key characteristic of both acute and chronic kidney diseases. Preclinical data suggest the involvement of the NLRP3/Inflammasome, receptor-interacting protein kinase-3 (RIPK3), and NRF2/oxidative pathways in the regulation of kidney inflammation. Cellular communication network factor 2 (CCN2, also called CTGF in the past) is an established fibrotic biomarker and a well-known mediator of kidney damage. CCN2 was shown to be involved in kidney damage through the regulation of proinflammatory and profibrotic responses. However, to date, the potential role of the NLRP3/RIPK3/NRF2 pathways in CCN2 actions has not been evaluated. In experimental acute kidney injury induced with folic acid in mice, CCN2 deficiency diminished renal inflammatory cell infiltration (monocytes/macrophages and T lymphocytes) as well as the upregulation of proinflammatory genes and the activation of NLRP3/Inflammasome-related components and specific cytokine products, such as IL-1ß. Moreover, the NRF2/oxidative pathway was deregulated. Systemic administration of CCN2 to C57BL/6 mice induced kidney immune cell infiltration and activated the NLRP3 pathway. RIPK3 deficiency diminished the CCN2-induced renal upregulation of proinflammatory mediators and prevented NLRP3 modulation. These data suggest that CCN2 plays a fundamental role in sterile inflammation and acute kidney injury by modulating the RIKP3/NLRP3/NRF2 inflammatory pathways.

2.
Antioxidants (Basel) ; 12(5)2023 May 20.
Article in English | MEDLINE | ID: mdl-37237996

ABSTRACT

Among the mechanisms involved in the progression of kidney disease, mitochondrial dysfunction has special relevance. Epigenetic drugs such as inhibitors of extra-terminal domain proteins (iBET) have shown beneficial effects in experimental kidney disease, mainly by inhibiting proliferative and inflammatory responses. The impact of iBET on mitochondrial damage was explored in in vitro studies in renal cells stimulated with TGF-ß1 and in vivo in murine unilateral ureteral obstruction (UUO) model of progressive kidney damage. In vitro, JQ1 pretreatment prevented the TGF-ß1-induced downregulation of components of the oxidative phosphorylation chain (OXPHOS), such as cytochrome C and CV-ATP5a in human proximal tubular cells. In addition, JQ1 also prevented the altered mitochondrial dynamics by avoiding the increase in the DRP-1 fission factor. In UUO model, renal gene expression levels of cytochrome C and CV-ATP5a as well as protein levels of cytochrome C were reduced These changes were prevented by JQ1 administration. In addition, JQ1 decreased protein levels of the DRP1 fission protein and increased the OPA-1 fusion protein, restoring mitochondrial dynamics. Mitochondria also participate in the maintenance of redox balance. JQ1 restored the gene expression of antioxidant proteins, such as Catalase and Heme oxygenase 1 in TGF-ß1-stimulated human proximal tubular cells and in murine obstructed kidneys. Indeed, in tubular cells, JQ1 decreased ROS production induced by stimulation with TGF-ß1, as evaluated by MitoSOXTM. iBETs, such as JQ1, improve mitochondrial dynamics, functionality, and oxidative stress in kidney disease.

3.
Int J Mol Sci ; 24(1)2022 Dec 28.
Article in English | MEDLINE | ID: mdl-36613933

ABSTRACT

Progressive glomerulonephritis (GN) is characterized by an excessive accumulation of extracellular (ECM) proteins, mainly type IV collagen (COLIV), in the glomerulus leading to glomerulosclerosis. The current therapeutic approach to GN is suboptimal. Epigenetic drugs could be novel therapeutic options for human disease. Among these drugs, bromodomain and extra-terminal domain (BET) inhibitors (iBETs) have shown beneficial effects in experimental kidney disease and fibrotic disorders. Sex-determining region Y-box 9 (SOX9) is a transcription factor involved in regulating proliferation, migration, and regeneration, but its role in kidney fibrosis is still unclear. We investigated whether iBETs could regulate ECM accumulation in experimental GN and evaluated the role of SOX9 in this process. For this purpose, we tested the iBET JQ1 in mice with anti-glomerular basement membrane nephritis induced by nephrotoxic serum (NTS). In NTS-injected mice, JQ1 treatment reduced glomerular ECM deposition, mainly by inhibiting glomerular COLIV accumulation and Col4a3 gene overexpression. Moreover, chromatin immunoprecipitation assays demonstrated that JQ1 inhibited the recruitment and binding of BRD4 to the Col4a3 promoter and reduced its transcription. Active SOX9 was found in the nuclei of glomerular cells of NTS-injured kidneys, mainly in COLIV-stained regions. JQ1 treatment blocked SOX9 nuclear translocation in injured kidneys. Moreover, in vitro JQ1 blocked TGF-ß1-induced SOX9 activation and ECM production in cultured mesangial cells. Additionally, SOX9 gene silencing inhibited ECM production, including COLIV production. Our results demonstrated that JQ1 inhibited SOX9/COLIV, to reduce experimental glomerulosclerosis, supporting further research of iBET as a potential therapeutic option in progressive glomerulosclerosis.


Subject(s)
Glomerulonephritis , Kidney Diseases , Animals , Mice , Cell Cycle Proteins/metabolism , Collagen Type IV/genetics , Collagen Type IV/metabolism , Gene Expression Regulation , Nuclear Proteins/genetics , SOX9 Transcription Factor/genetics , SOX9 Transcription Factor/metabolism , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...