Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-31156321

ABSTRACT

This paper presents results of construction and operation of a persistent-mode, liquid-helium-free, small-scale prototype magnet for the development of a tabletop 1.5-T "finger" MRI system for osteoporosis screening. The prototype magnet, composed of 2 MgB2 coils, one superconducting joint, and a persistent-current switch (PCS) built from a portion of one coil, was wound with a one continuous ~80-m long unreacted and monofilament MgB2 wire and then reacted. The test magnet was charged successfully and generated the estimated target field of 1.75 T at 5 K with the proposed PCS operation. During initial persistent-mode, the field was slightly decayed due to the index dissipation of the joint; thereafter it sustained the persistent field of 1.7 T for 35 h. The test results validated the joint resistance of < 1.2 × 10-11 as well as the proposed approach involving the PCS coil circuit model.

2.
Article in English | MEDLINE | ID: mdl-32025179

ABSTRACT

Upon the totally unexpected theft of the original 600 MHz HTS insert that occurred in December 2011, we were forced to examine our entire 1.3 GHz NMR Magnet program anew and determined that a combination of a 600 MHz LTS magnet and a 700 MHz HTS insert (H700) would yield a 1.3 GHz LTS/HTS magnet that meets the technical specifications consistent with economic constraints. Although this new 700 MHz HTS insert still comprises, as H600, a YBCO inner coil and a Bi2223 outer coil, it incorporates innovative design features. In addition to presenting the major design parameters of the new H700, we discuss here its key electromagnetic and mechanical issues.

3.
Physica C Supercond ; 470(20): 1721-1726, 2010 Nov 01.
Article in English | MEDLINE | ID: mdl-29176925

ABSTRACT

In 2008, the Phase 3 program to complete a 1.3 GHz (30.5 T) NMR magnet started at the Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology. It comprises two sub-phases, 3A and 3B. In Phase 3A, a 600 MHz high temperature superconductor (HTS) insert magnet (H600) will be designed, constructed, and operated in the bore of a 500 MHz low temperature superconductor (LTS) background magnet. This will be followed by Phase 3B, in which the H600 will be combined with a 700 MHz LTS background magnet to complete a 1.3 GHz NMR LTS/HTS magnet. This paper presents and discusses design issues for two conductor options for H600: BiSCCO-2223 (Bi2223) and coated-YBCO or its variants, here designated as YBCO. For each conductor option, we focused on the following issues: 1) elastic and thermal properties; 2) critical current vs. field performance; 3) splice and index heat dissipations; 4) mechanical and thermal stresses; and 5) protection.

4.
Rev Sci Instrum ; 79(2 Pt 1): 026105, 2008 Feb.
Article in English | MEDLINE | ID: mdl-18315337

ABSTRACT

For the first time in nuclear magnetic resonance (NMR) magnet development, a magnet configuration comprising an insert wound with high-temperature superconductor (HTS) and a background-field magnet wound with low-temperature superconductor (LTS) has been proven viable for NMR magnets. This new LTS/HTS magnet configuration opens the way for development of 1 GHz and above NMR magnets. Specifically, a 700 MHz LTS/HTS NMR magnet (LH700), consisting of a 600 MHz LTS magnet (L600) and a 100 MHz HTS insert (H100), has been designed, built, and successfully tested, and its magnetic field characteristics were measured and analyzed. A field homogeneity of 172 ppm in a cylindrical mapping volume of 17 mm diameter by 30 mm long was measured at 692 MHz and corresponding 1H NMR signal with 1.9 kHz half-width was captured. Two techniques, room-temperature and ferromagnetic shimming, were analytically examined to investigate if they would be effective for further improving spatial field homogeneity of the LH700.

SELECTION OF CITATIONS
SEARCH DETAIL
...