Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Foods ; 12(19)2023 Oct 08.
Article in English | MEDLINE | ID: mdl-37835342

ABSTRACT

Legume flours, which offer high nutritional quality, present viable options for gluten-free bakery products. However, they may have an objectionable flavor and taste for some consumers. In this study, it was aimed to improve the gluten-free cookie formulation by incorporating carob and hazelnut flours to pre-cooked chickpea flour and to investigate the techno-functional properties of the formulated cookies. The flours used in the formulations were assessed for their chemical and physical properties. This study employed a mixture design (simplex-centroid) to obtain the proportions of the flours to be used in the cookie formulations. The rheological characteristics of the doughs and the technological attributes of the baked cookies were determined. The addition of the hazelnut and carob flours had the overall effect of reducing the rheological characteristics of the cookie doughs. Furthermore, the textural attribute of the hardness of the baked cookies decreased as the ratio of hazelnut flour in the formulations was raised. The analysed results and sensory evaluation pointed to a formulation consisting of 30% pre-cooked chickpea/30% carob/30% hazelnut flours, which exhibited improved taste and overall acceptability scores. A total of 16.82 g/100 g of rapidly digestible starch, 5.36 g/100 g of slowly digestible starch, and 8.30 g/100 g of resistant starch exist in this particular cookie. As a result, combinations of chickpea, hazelnut, and carob flours hold promise as good alternatives for gluten-free cookie ingredients and warrant further exploration in the development of similar products.

2.
Front Nutr ; 10: 1220533, 2023.
Article in English | MEDLINE | ID: mdl-37637953

ABSTRACT

Objective: Zinc is an essential micronutrient that is critical for many physiological processes, including glucose metabolism, regulation of inflammation, and intestinal barrier function. Further, zinc dysregulation is associated with an increased risk of chronic inflammatory diseases such as type II diabetes, obesity, and inflammatory bowel disease. However, whether altered zinc status is a symptom or cause of disease onset remains unclear. Common symptoms of these three chronic diseases include the onset of increased intestinal permeability and zinc dyshomeostasis. The specific focus of this work is to investigate how dietary sources of intestinal permeability, such as high sucrose consumption, impact transporter-mediated zinc homeostasis and subsequent zinc-dependent physiology contributing to disease development. Method: We used in vivo subchronic sucrose treatment, ex vivo intestinal organoid culture, and in vitro cell systems. We analyze the alterations in zinc metabolism and intestinal permeability and metabolic outcomes. Results: We found that subchronic sucrose treatment resulted in systemic changes in steady-state zinc distribution and increased 65Zn transport (blood-to-intestine) along with greater ZIP14 expression at the basolateral membrane of the intestine. Further, sucrose treatment enhanced cell survival of intestinal epithelial cells, activation of the EGFR-AKT-STAT3 pathway, and intestinal permeability. Conclusion: Our work suggests that subchronic high sucrose consumption alters systemic and intestinal zinc homeostasis linking diet-induced changes in zinc homeostasis to the intestinal permeability and onset of precursors for chronic disease.

3.
Foods ; 12(15)2023 Jul 26.
Article in English | MEDLINE | ID: mdl-37569098

ABSTRACT

Chickpea flour, which is produced in various forms, has high protein and fiber content; therefore, it can be a good ingredient for gluten-free cookies. The objective of this study was to investigate and compare the properties of cookies formulated using raw (RCF), cooked (CCF), and germinated (GCF) chickpea flours. The techno-functional properties of these flours were determined, and scanning electron microscope images and mid-infrared spectra were obtained. The rheological properties of cookie doughs were measured along with their mid-infrared spectra. Baked cookies were analyzed for their technological properties as well as their in vitro digestion properties. Sensory analysis was also performed for all the cookies. The most significant difference among the flours was observed in their water retention capacity, and CCF had 119.7% higher water retention capacity compared to RCF. The dough made with CCF had quite different rheological properties from the others. The cookies baked with GCF had the highest baking loss and spread ratio. The CCF-containing cookies had the hardest structure. The cookies made from RCF had a higher resistant starch content followed by the cookies with GCF. All the cookies had similar scores in all aspects tested in the sensory analysis. The use of three different forms of chickpea flour in cookie formulations resulted in products with very different properties; however, their overall acceptability levels were close.

SELECTION OF CITATIONS
SEARCH DETAIL
...