Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Language
Publication year range
1.
Mol Biol Rep ; 51(1): 783, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38926176

ABSTRACT

BACKGROUND: Autosomal recessive primary microcephaly (MCPH) is a rare neurodevelopmental and genetically heterogeneous disorder, characterized by small cranium size (> - 3 SD below mean) and often results in varying degree of intellectual disability. Thirty genes have been identified for the etiology of this disorder due to its clinical and genetic heterogeneity. METHODS AND RESULTS: Here, we report two consanguineous Pakistani families affected with MCPH exhibiting mutation in WDR62 gene. The investigation approach involved Next Generation Sequencing (NGS) gene panel sequencing coupled with linkage analysis followed by validation of identified variants through automated Sanger sequencing and Barcode-Tagged (BT) sequencing. The molecular genetic analysis revealed one novel splice site variant (NM_001083961.2(WDR62):c.1372-1del) in Family A and one known exonic variant NM_001083961.2(WDR62):c.3936dup (p.Val1313Argfs*18) in Family B. Magnetic Resonance Imaging (MRI) scans were also employed to gain insights into the structural architecture of affected individuals. Neurological assessments showed the reduced gyral and sulcal patterns along with normal corpus callosum in affected individuals harboring novel variant. In silico assessments of the identified variants were conducted using different tools to confirm the pathogenicity of these variants. Through In silico analyses, both variants were identified as disease causing and protein modeling of exonic variant indicates subtle conformational alterations in prophesied protein structure. CONCLUSION: This study identifies a novel variant (c.1372-1del) and a recurrent pathogenic variant c.3936dup (p.Val1313Argfs*18) in the WDR62 gene among the Pakistani population, expanding the mutation spectrum for MCPH. These findings emphasize the importance of genetic counseling and awareness to reduce consanguinity and address the burden of this disorder.


Subject(s)
Consanguinity , Microcephaly , Mutation , Nerve Tissue Proteins , Pedigree , Humans , Microcephaly/genetics , Female , Male , Pakistan , Mutation/genetics , Nerve Tissue Proteins/genetics , Neuroimaging/methods , Child , Magnetic Resonance Imaging/methods , High-Throughput Nucleotide Sequencing/methods , Child, Preschool , Adolescent , Cell Cycle Proteins
2.
Mol Biol Rep ; 51(1): 104, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38224417

ABSTRACT

BACKGROUND: Autosomal Recessive Primary Microcephaly (MCPH) is a rare, neurodevelopmental disorder associated with mild to severe mental retardation. It is characterized by reduced cerebral cortex that ultimately leads to reduction in skull size less than - 3 S.D below the mean for normal individuals having same age and sex. Till date, 30 known loci have been reported for MCPH. METHODS: In the present study, Sanger sequencing was performed followed by linkage analysis to validate the mutation in ASPM gene of the consanguineous Pakistani clans. Bioinformatics tools were also used to confirm the pathogenicity of the diseased variant in the gene. MRI scan was used to compare the brain structure of both the affected individuals (Aslam et al. in Kinnaird's 2nd International Conference on Science, Technology and Innovation, Lahore, 2023). RESULTS: Our study described a consanguineous family with two patients with a known ASPM (MCPH5) variant c.8508_8509delGA causing a frameshift mutation in exon 18 which located in calmodulin-binding IQ domain of the ASPM protein. The salient feature of this study is that a single variant led to significantly distinct changes in the architecture of brain of both siblings which is further confirmed by MRI results. The computation analysis showed that the change in the conservation of this residue cause this variant highly pathogenic. Carrier screening and genetic counselling were also remarkable features of this study (Aslam et al. in Kinnaird's 2nd International Conference on Science, Technology and Innovation, Lahore, 2023). CONCLUSION: This study explores the extraordinary influence of a single ASPM variant on divergent brain structure in consanguineous siblings and enable us to reduce the incidence of further microcephalic cases in this Pakistani family (Aslam et al. in Kinnaird's 2nd International Conference on Science, Technology and Innovation, Lahore, 2023).


Subject(s)
Brain , Siblings , Humans , Consanguinity , Pakistan , Brain/diagnostic imaging , Nerve Tissue Proteins
3.
Biosci. j. (Online) ; 38: e38084, Jan.-Dec. 2022. ilus, tab
Article in English | LILACS | ID: biblio-1397167

ABSTRACT

We optimized the expression and purification of outer membrane proteins SpaO and LamB from Salmonella typhi. We investigated various factors in the expression and purification processes, including the use of isopropyl ß-d-1 thiogalactopyranoside (IPTG), imidazole, and urea. First, PCR amplification was carried out on SpaO and LamB genes. The genes were then cloned in pTZ57R/T, and then expressed in pET28a vector and transformed into Escherichia coli BL21 (DE3). Gene insertion was confirmed by enzymatic digestion with NdeI and XhoI. Inclusion bodies expressing recombinant SpaO and LamB were induced with 200 and 400 µL 0.5 mM IPTG, respectively. The formed protein inclusion bodies were then isolated from the pellet and solubilized in IB buffer containing 8 M urea for SpaO and 6 M urea for LamB. Proteins were refolded by dialysis in 3M urea. Purified proteins with nickel-nitrilotriacetic acid affinity chromatography and eluted with buffer containing 250 mM imidazole for SpaO and 150 mM imidazole for LamB. The protein expression profiles were analyzed by SDS-PAGE, which identified the 33 and 49 kDa bands corresponding to rSpaO and rLamB. Western blotting Purification was carried out by nickel affinity resin with 250 mM and 150 mM imidazole for rSpaO and rLamB and refolded through stepwise dialysis with anti-His tag antibodies confirmed their expression. These optimized methods can be used to generate recombinant proteins for the development of future vaccines.


Subject(s)
Salmonella typhi , Membrane Proteins
SELECTION OF CITATIONS
SEARCH DETAIL