Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Crit Care Med ; 50(5): 723-732, 2022 05 01.
Article in English | MEDLINE | ID: mdl-35200194

ABSTRACT

OBJECTIVES: Prone positioning allows to improve oxygenation and decrease mortality rate in COVID-19-associated acute respiratory distress syndrome (C-ARDS). However, the mechanisms leading to these effects are not fully understood. The aim of this study is to assess the physiologic effects of pronation by the means of CT scan and electrical impedance tomography (EIT). DESIGN: Experimental, physiologic study. SETTING: Patients were enrolled from October 2020 to March 2021 in an Italian dedicated COVID-19 ICU. PATIENTS: Twenty-one intubated patients with moderate or severe C-ARDS. INTERVENTIONS: First, patients were transported to the CT scan facility, and image acquisition was performed in prone, then supine position. Back to the ICU, gas exchange, respiratory mechanics, and ventilation and perfusion EIT-based analysis were provided toward the end of two 30 minutes steps (e.g., in supine, then prone position). MEASUREMENTS AND MAIN RESULTS: Prone position induced recruitment in the dorsal part of the lungs (12.5% ± 8.0%; p < 0.001 from baseline) and derecruitment in the ventral regions (-6.9% ± 5.2%; p < 0.001). These changes led to a global increase in recruitment (6.0% ± 6.7%; p < 0.001). Respiratory system compliance did not change with prone position (45 ± 15 vs 45 ± 18 mL/cm H2O in supine and prone position, respectively; p = 0.957) suggesting a decrease in atelectrauma. This hypothesis was supported by the decrease of a time-impedance curve concavity index designed as a surrogate for atelectrauma (1.41 ± 0.16 vs 1.30 ± 0.16; p = 0.001). Dead space measured by EIT was reduced in the ventral regions of the lungs, and the dead-space/shunt ratio decreased significantly (5.1 [2.3-23.4] vs 4.3 [0.7-6.8]; p = 0.035), showing an improvement in ventilation-perfusion matching. CONCLUSIONS: Several changes are associated with prone position in C-ARDS: increased lung recruitment, decreased atelectrauma, and improved ventilation-perfusion matching. These physiologic effects may be associated with more protective ventilation.


Subject(s)
COVID-19 , Respiratory Distress Syndrome , Electric Impedance , Humans , Lung/diagnostic imaging , Perfusion , Positive-Pressure Respiration/methods , Prone Position , Respiratory Distress Syndrome/diagnostic imaging , Respiratory Distress Syndrome/therapy , Tomography, X-Ray Computed
2.
Anesthesiology ; 135(6): 1066-1075, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34644374

ABSTRACT

BACKGROUND: Experimental and pilot clinical data suggest that spontaneously breathing patients with sepsis and septic shock may present increased respiratory drive and effort, even in the absence of pulmonary infection. The study hypothesis was that respiratory drive and effort may be increased in septic patients and correlated with extrapulmonary determinant and that high-flow nasal cannula may modulate drive and effort. METHODS: Twenty-five nonintubated patients with extrapulmonary sepsis or septic shock were enrolled. Each patient underwent three consecutive steps: low-flow oxygen at baseline, high-flow nasal cannula, and then low-flow oxygen again. Arterial blood gases, esophageal pressure, and electrical impedance tomography data were recorded toward the end of each step. Respiratory effort was measured as the negative swing of esophageal pressure (ΔPes); drive was quantified as the change in esophageal pressure during the first 500 ms from start of inspiration (P0.5). Dynamic lung compliance was calculated as the tidal volume measured by electrical impedance tomography, divided by ΔPes. The results are presented as medians [25th to 75th percentile]. RESULTS: Thirteen patients (52%) were in septic shock. The Sequential Organ Failure Assessment score was 5 [4 to 9]. During low-flow oxygen at baseline, respiratory drive and effort were elevated and significantly correlated with arterial lactate (r = 0.46, P = 0.034) and inversely with dynamic lung compliance (r = -0.735, P < 0.001). Noninvasive support by high-flow nasal cannula induced a significant decrease of respiratory drive (P0.5: 6.0 [4.4 to 9.0] vs. 4.3 [3.5 to 6.6] vs. 6.6 [4.9 to 10.7] cm H2O, P < 0.001) and effort (ΔPes: 8.0 [6.0 to 11.5] vs. 5.5 [4.5 to 8.0] vs. 7.5 [6.0 to 12.6] cm H2O, P < 0.001). Oxygenation and arterial carbon dioxide levels remained stable during all study phases. CONCLUSIONS: Patients with sepsis and septic shock of extrapulmonary origin present elevated respiratory drive and effort, which can be effectively reduced by high-flow nasal cannula.


Subject(s)
Cannula , Respiratory Insufficiency/physiopathology , Respiratory Insufficiency/therapy , Respiratory Rate/physiology , Shock, Septic/physiopathology , Shock, Septic/therapy , Aged , Cohort Studies , Electric Impedance/therapeutic use , Female , Humans , Intensive Care Units , Male , Middle Aged , Oxygen Inhalation Therapy/instrumentation , Oxygen Inhalation Therapy/methods , Sepsis/physiopathology , Sepsis/therapy
3.
Crit Care ; 24(1): 654, 2020 11 23.
Article in English | MEDLINE | ID: mdl-33225971

ABSTRACT

BACKGROUND: Nasal high flow delivered at flow rates higher than 60 L/min in patients with acute hypoxemic respiratory failure might be associated with improved physiological effects. However, poor comfort might limit feasibility of its clinical use. METHODS: We performed a prospective randomized cross-over physiological study on 12 ICU patients with acute hypoxemic respiratory failure. Patients underwent three steps at the following gas flow: 0.5 L/kg PBW/min, 1 L/kg PBW/min, and 1.5 L/kg PBW/min in random order for 20 min. Temperature and FiO2 remained unchanged. Toward the end of each phase, we collected arterial blood gases, lung volumes, and regional distribution of ventilation assessed by electrical impedance tomography (EIT), and comfort. RESULTS: In five patients, the etiology was pulmonary; infective disease characterized seven patients; median PaO2/FiO2 at enrollment was 213 [IQR 136-232]. The range of flow rate during NHF 1.5 was 75-120 L/min. PaO2/FiO2 increased with flow, albeit non significantly (p = 0.064), PaCO2 and arterial pH remained stable (p = 0.108 and p = 0.105). Respiratory rate decreased at higher flow rates (p = 0.014). Inhomogeneity of ventilation decreased significantly at higher flows (p = 0.004) and lung volume at end-expiration significantly increased (p = 0.007), but mostly in the non-dependent regions. Comfort was significantly poorer during the step performed at the highest flow (p < 0.001). CONCLUSIONS: NHF delivered at rates higher than 60 L/min in critically ill patients with acute hypoxemic respiratory failure is associated with reduced respiratory rate, increased lung homogeneity, and additional positive pressure effect, but also with worse comfort.


Subject(s)
Administration, Intranasal/methods , Oxygen/administration & dosage , Respiratory Insufficiency/drug therapy , Administration, Intranasal/instrumentation , Adult , Aged , Aged, 80 and over , Analysis of Variance , Body Mass Index , Carbon Dioxide/analysis , Carbon Dioxide/blood , Female , Humans , Italy , Male , Middle Aged , Organ Dysfunction Scores , Oxygen/analysis , Prospective Studies , Respiratory Insufficiency/physiopathology , Simplified Acute Physiology Score
4.
Crit Care Med ; 48(8): 1129-1134, 2020 08.
Article in English | MEDLINE | ID: mdl-32697482

ABSTRACT

OBJECTIVES: Severe cases of coronavirus disease 2019 develop the acute respiratory distress syndrome, requiring admission to the ICU. This study aimed to describe specific pathophysiological characteristics of acute respiratory distress syndrome from coronavirus disease 2019. DESIGN: Prospective crossover physiologic study. SETTING: ICU of a university-affiliated hospital from northern Italy dedicated to care of patients with confirmed diagnosis of coronavirus disease 2019. PATIENTS: Ten intubated patients with acute respiratory distress syndrome and confirmed diagnosis of coronavirus disease 2019. INTERVENTIONS: We performed a two-step positive end-expiratory pressure trial with change of 10 cm H2O in random order. MEASUREMENTS AND MAIN RESULTS: At each positive end-expiratory pressure level, we assessed arterial blood gases, respiratory mechanics, ventilation inhomogeneity, and potential for lung recruitment by electrical impedance tomography. Potential for lung recruitment was assessed by the recently described recruitment to inflation ratio. In a subgroup of seven paralyzed patients, we also measured ventilation-perfusion mismatch at lower positive end-expiratory pressure by electrical impedance tomography. At higher positive end-expiratory pressure, respiratory mechanics did not change significantly: compliance remained relatively high with low driving pressure. Oxygenation and ventilation inhomogeneity improved but arterial CO2 increased despite unchanged respiratory rate and tidal volume. The recruitment to inflation ratio presented median value higher than previously reported in acute respiratory distress syndrome patients but with large variability (median, 0.79 [0.53-1.08]; range, 0.16-1.40). The FIO2 needed to obtain viable oxygenation at lower positive end-expiratory pressure was significantly correlated with the recruitment to inflation ratio (r = 0.603; p = 0.05). The ventilation-perfusion mismatch was elevated (median, 34% [32-45%] of lung units) and, in six out of seven patients, ventilated nonperfused units represented a much larger proportion than perfused nonventilated ones. CONCLUSIONS: In patients with acute respiratory distress syndrome from coronavirus disease 2019, potential for lung recruitment presents large variability, while elevated dead space fraction may be a specific pathophysiological trait. These findings may guide selection of personalized mechanical ventilation settings.


Subject(s)
Betacoronavirus , Coronavirus Infections/complications , Pneumonia, Viral/complications , Positive-Pressure Respiration/methods , Respiratory Distress Syndrome/therapy , Adult , Aged , Aged, 80 and over , Blood Gas Analysis , COVID-19 , Cross-Over Studies , Female , Hospitals, University , Humans , Italy , Male , Middle Aged , Oxygen/blood , Pandemics , Prospective Studies , Respiratory Distress Syndrome/etiology , Respiratory Distress Syndrome/physiopathology , Respiratory Mechanics , SARS-CoV-2
5.
Pediatr Neurosurg ; 51(5): 249-52, 2016.
Article in English | MEDLINE | ID: mdl-27193444

ABSTRACT

Cranial computed tomography (CT) is considered the gold standard for the diagnosis of traumatic brain injury (TBI). The aim of this study was to evaluate if the clinical decision rules proposed by the Pediatric Emergency Care Applied Research Network (CDRs-PECARN) are really able to identify the patients who do not need cranial CT. This study investigates the neuropsychiatric outcome after TBI according to a pediatric version of the Glasgow Outcome Scale-Extended (GOS-E Peds). We calculated the sensitivity, specificity, negative predictive value (NPV) and positive predictive value of the CDRs-PECARN in 2 age groups. Sensitivity was very high in both groups, and the NPV was very useful for predicting which subjects, of those who presented without CDRs- PECARN, would have a negative cranial CT. We also evaluated the correlations between the GOS-E Peds and Glasgow Coma Scale and between the GOS-E Peds and cranial CT scan. Our study confirms the validation of the PECARN TBI prediction rules as a clinical instrument which can play a significant role in CT decision-making for children with TBI. It also demonstrates that the GOS-E Peds is a valid pediatric outcome scale for children with TBI, despite some important limitations.


Subject(s)
Brain Injuries, Traumatic/diagnostic imaging , Brain Injuries, Traumatic/psychology , Emergency Medical Services/methods , Neuropsychological Tests , Pediatrics/methods , Tomography, X-Ray Computed , Adolescent , Brain Injuries, Traumatic/epidemiology , Child , Child, Preschool , Cohort Studies , Female , Glasgow Coma Scale , Humans , Infant , Infant, Newborn , Italy/epidemiology , Male , Predictive Value of Tests , Prospective Studies , Retrospective Studies , Tomography, X-Ray Computed/methods
7.
Ital J Pediatr ; 41: 68, 2015 Sep 29.
Article in English | MEDLINE | ID: mdl-26416660

ABSTRACT

BACKGROUND: To assess the prevalence of femicides in Italy over the last three years and the potential long lasting effects of these traumatic events for the children of a woman who dies a violent death. METHODS: The data used in this study come from an internet search for the number of femicides occurring in Italy between 1(st) January, 2012 and 31(st) October, 2014. RESULTS: The total number of femicides was 319; the average age of murdered women was 47.50 ± 19.26. Cold arms in the form of sharp object -mostly knives- have caused the death of 102/319 women; firearms were used in 87/319 cases; asphyxiation was the chosen method in 52/319 cases. About the place where the femicides occurred, 209/319 were committed inside the victim's house. Children of women who died a violent death were 417 with a total of 180 minors in less than three years. A total of 52/417 children were witness to the killing and, among these 30/52 were minors; in 18/417 cases, children were murdered together with their mother and among these 9/18 were minors. CONCLUSIONS: Long-term studies are needed to ascertain what happens to these children, to understand what are the most appropriate psychological treatments, the best decisions about the contact with their father and the best placement for these children.


Subject(s)
Child, Orphaned , Crime Victims/statistics & numerical data , Homicide/statistics & numerical data , Mothers/statistics & numerical data , Cause of Death , Child , Child, Preschool , Female , Humans , Infant , Infant, Newborn , Italy/epidemiology , Prevalence
SELECTION OF CITATIONS
SEARCH DETAIL
...