Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
Insects ; 15(7)2024 Jun 24.
Article in English | MEDLINE | ID: mdl-39057203

ABSTRACT

Laboratory and field assays of three sets of experiments were conducted to evaluate the impact of different phagostimulants alone and in combination with other phagostimulant lure sources, such as ammonium acetate, DAP, and acetic acid, on the attractancy of both sexes of B. zonata. In the first experiment, the laboratory olfactometer study revealed that out of eleven phagostimulants, banana, mulberry, mango, guava, molasses, and protein hydrolysate exhibited moderate attractancy (15.2-60.2%) to B. zonata. Unexpectedly, banana and protein hydrolysate were demonstrated to be highly attractive phagostimulants for starved female B. zonata (53.6% and 60.2%, respectively). In the field study, none of the tested phagostimulants exhibited high attractancy; however, banana, mulberry, protein hydrolysate, guava, mango, and molasses demonstrated moderate attractancy (5.6-35.6%) to B. zonata. In the second experiment, out of five phagostimulant-mixtures, phagostimulant-mixture-4 proved highly attractive (40.5-68.6% and 45.5-51.2%), followed by phagostimulant-mixture-3, which proved to be moderately attractive (17.0-22.5% and 28.4-36.1%) to B. zonata in olfactometer and field studies, respectively. In the third experiment, out of five phagostimulant-AdMixtures, phagostimulant-AdMixture-4 demonstrated strong attractiveness in the olfactometer (41.6-68.7%) and field studies (52.7-58.7%) for B. zonata, while the rest of the AdMixtures demonstrated moderate to no attractiveness for B. zonata. So, phagostimulant-AdMixture-4 with GF-120 could be used in the development of a phagostimulant bait station which attracts the maximum B. zonata population and ultimately provides pest-free fruits to the farmers.

2.
Sci Rep ; 14(1): 13492, 2024 06 12.
Article in English | MEDLINE | ID: mdl-38866875

ABSTRACT

Liver cancer is one of the most pivotal global health problems, leading hepatocellular carcinoma (HCC) with a significant increase in cases worldwide. The role of non-coding-RNA in cancer proliferation and carcinogenesis has attracted much attention in the last decade; however, microRNAs (miRNAs), as non-coding RNA, are considered master mediators in various cancer progressions. Yet the role of miR-141 as a modulator for specific cellular processes in liver cancer cell proliferation is still unclear. This study identified the role of miR-141 and its potential functions in liver carcinogenesis. The level of miR-141 in HepG2 and HuH7 cells was assessed using quantitative real-time PCR (qRT-PCR) and compared with its expression in normal hepatocytes. A new miR-141 construct has been performed in a CMV promoter vector tagged with GFP. Using microarray analysis, we identified the potentially regulated genes by miR-141 in transfected HepG2 cells. The protein profile of the kallikrein-related peptidase 10 (KLK10) and tumor necrosis factor TNFSF-15 was investigated in HepG2 cells transfected with either an inhibitor, antagonist miR-141, or miR-141 overexpression vector using immunoblotting and flow cytometry assay. Finally, ELISA assay has been used to monitor the produced inflammatory cytokines from transfected HepG2 cells. Our findings showed that the expression of miR-141 significantly increased in HepG2 and HuH7 cells compared to the normal hepatocytes. Transfection of HepG2 cells with an inhibitor, antagonist miR-141, showed a significant reduction of HepG2 cell viability, unlike the transfection of miR-141 overexpression vector. The microarray data of HepG2 cells overexpressed miR-141 provided a hundred downregulated genes, including KLK10 and TNFSF-15. Furthermore, the expression profile of KLK10 and TNFSF-15 markedly depleted in HepG2 cells transfected with miR-141 overexpression accompanied by a decreasing level of interleukin 6 (IL-6) and tumor necrosis factor-alpha (TNF-α), indicating the role of miR-141 in HepG2 cell proliferation and programmed cell death. Interestingly, the experimental rats with liver cancer induced by Diethylnitrosamine injection further confirmed the upregulation of miR-141 level, IL-10, and TNF-α and the disturbance in KLK10 and TNFSF-15 gene expression compared with their expression in normal rats. The in-silico online tools, IntaRNA and miRWalk were used to confirm the direct interaction and potential binding sites between miR-141 and identified genes. Thus, the seeding regions of potential targeted sequences was cloned upstream of luciferase reporter gene in pGL3 control vector. Interestingly, the luciferase activities of constructed vectors were significantly decreased in HepG2 cells pre-transfected with miR-141 overexpression vector, while increasing in cells pre-transfected with miR-141 specific inhibitor. In summary, these data suggest the crucial role of miR-141 in liver cancer development via targeting KLK10 and TNFSF-15 and provide miR-141 as an attractive candidate in liver cancer treatment and protection.


Subject(s)
Gene Expression Regulation, Neoplastic , Hepatoblastoma , Liver Neoplasms , MicroRNAs , Humans , Carcinogenesis/genetics , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/metabolism , Cell Line, Tumor , Cell Proliferation , Hep G2 Cells , Hepatoblastoma/genetics , Hepatoblastoma/metabolism , Hepatoblastoma/pathology , Kallikreins/genetics , Kallikreins/metabolism , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Liver Neoplasms/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism
3.
Eur J Respir Med ; 6(1): 389-397, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38390523

ABSTRACT

Objective: Human and preclinical studies of sulfur mustard (SM)-induced acute and chronic lung injuries highlight the role of unremitting inflammation. We assessed the utility of targeting the novel DAMP and TLR4 ligand, eNAMPT (extracellular nicotinamide phosphoribosyltransferase), utilizing a humanized mAb (ALT-100) in rat models of SM exposure. Methods: Acute (SM 4.2 mg/kg, 24 hrs), subacute (SM 0.8 mg/kg, day 7), subacute (SM 2.1 mg/kg, day 14), and chronic (SM 1.2 mg/kg, day 29) SM models were utilized. Results: Each SM model exhibited significant increases in eNAMPT expression (lung homogenates) and increased levels of phosphorylated NFkB and NOX4. Lung fibrosis (Trichrome staining) was observed in both sub-acute and chronic SM models in conjunction with elevated smooth muscle actin (SMA), TGFß, and IL-1ß expression. SM-exposed rats receiving ALT-100 (1 or 4 mg/kg, weekly) exhibited increased survival, highly significant reductions in histologic/biochemical evidence of lung inflammation and fibrosis (Trichrome staining, decreased pNFkB, SMA, TGFß, NOX4), decreased airways strictures, and decreased plasma cytokine levels (eNAMPT, IL-6, IL-1ß. TNFα). Conclusion: The highly druggable, eNAMPT/TLR4 signaling pathway is a key contributor to SM-induced ROS production, inflammatory lung injury and fibrosis. The ALT-100 mAb is a potential medical countermeasure to address the unmet need to reduce SM-associated lung pathobiology/mortality.

4.
Front Physiol ; 14: 1233391, 2023.
Article in English | MEDLINE | ID: mdl-38274050

ABSTRACT

Introduction: Developmental defects of the enamel manifest before tooth eruption and include amelogenesis imperfecta, a rare disease of underlying gene mutations, and molar-incisor hypomineralization (MIH), a prevalent disease in children originating from environmental and epigenetic factors. MIH enamel presents as the abnormal enamel marked by loss of translucency, demarcation between the healthy and affected enamel, and reduced mineral content. The pathophysiology of opaque, demarcated enamel lesions is not understood; however, the retention of enamel proteins in the matrix has been suggested. Ameloblastin (Ambn) is an enamel protein of the secreted calcium-binding phosphoproteins (SCPPs) critical for enamel formation. When the Ambn gene is mutated or deleted, teeth are affected by hypoplastic amelogenesis imperfecta. Methods: In this study, enamel formation in mice was analyzed when transgenic Ambn was overexpressed from the amelogenin promoter encoding full-length Ambn. Ambn was under- and overexpressed at six increasing concentrations in separate mouse lines. Results: Mice overexpressing Ambn displayed opaque enamel at low concentrations and demarcated lesions at high concentrations. The severity of enamel lesions increased starting from the inner enamel close to the dentino-enamel junction (DEJ) to span the entire width of the enamel layer in demarcated areas. Associated with the opaque enamel were 17-kDa Ambn cleavage products, a prolonged secretory stage, and a thin basement membrane in the maturation stage. Ambn accumulations found in the innermost enamel close to the DEJ and the mineralization front correlated with reduced mineral content. Demarcated enamel lesions were associated with Ambn species of 17 kDa and higher, prolonged secretory and transition stages, a thin basement membrane, and shortened maturation stages. Hypomineralized opacities were delineated against the surrounding mineralized enamel and adjacent to ameloblasts detached from the enamel surface. Inefficient Ambn cleavage, loss of contact between ameloblasts, and the altered basement membrane curtailed the endocytic activity; thus, enamel proteins remained unresorbed in the matrix. Ameloblasts have the ability to distinguish between Ambn concentration and Ambn cleavage products through finely tuned feedback mechanisms. The under- or overexpression of Ambn in murine secretory ameloblasts results in either hypoplastic amelogenesis imperfecta or hypomineralization with opaque or sharply demarcated boundaries of lesions, similar to MIH.

5.
Antibiotics (Basel) ; 10(5)2021 Apr 22.
Article in English | MEDLINE | ID: mdl-33921977

ABSTRACT

Pasteurella multocida is a Gram-negative bacterium that causes drastic infections in cattle and humans. In this study, 55 isolates were recovered from 115 nasal swabs from apparently healthy and diseased cattle and humans in Minufiya and Qalyubia, Egypt. These isolates were confirmed by kmt1 existence, and molecular classification of the capsular types showed that types B, D, and E represented 23/55 (41.8%), 21/55 (38.1%), and 11/55 (20.0%), respectively. The isolates were screened for five virulence genes with hgbA, hgbB, and ptfA detected in 28/55 (50.9%), 30/55 (54.5%), and 25/55 (45.5%), respectively. We detected 17 capsular and virulence gene combinations with a discriminatory power (DI) of 0.9286; the most prevalent profiles were dcbF type D and dcbF type D, hgbA, hgbB, and ptfA, which represented 8/55 (14.5%) each. These strains exhibited high ranges of multiple antimicrobial resistance indices; the lowest resistances were against chloramphenicol, ciprofloxacin, amoxicillin/clavulanic acid, and levofloxacin. The macrolide-lincosamide-streptogramin B methylase gene erm(Q), with erm(42) encoding MLSB monomethyltransferase, mph(E) encoding a macrolide efflux pump, and msr(E) encoding macrolide-inactivating phosphotransferase were present. The class 1 and 2 integrons and extended-spectrum ß-lactamase genes intl1, intl2, blaCTX-M, blaCTX-M-1, and blaTEM were detected. It is obvious to state that co-occurrence of resistance genes resulted in multiple drug-resistant phenotypes. The identified isolates were virulent, genetically diverse, and resistant to antimicrobials, highlighting the potential risk to livestock and humans.

6.
Eur J Neurosci ; 2018 May 24.
Article in English | MEDLINE | ID: mdl-29797618

ABSTRACT

Originally, uptake-mediated termination of monoamine (e.g., serotonin and dopamine) signalling was believed to only occur via high-affinity, low-capacity transporters ("uptake1 ") such as the serotonin or dopamine transporters, respectively. Now, the important contribution of a second low-affinity, high-capacity class of biogenic amine transporters has been recognised, particularly in circumstances when uptake1 transporter function is reduced (e.g., antidepressant treatment). Pharmacologic or genetic reductions in uptake1 function can change locomotor, anxiety-like or stress-coping behaviours. Comparable behavioural investigations into reduced low-affinity, high-capacity transporter function are lacking, in part, due to a current dearth of drugs that selectively target particular low-affinity, high-capacity transporters, such as the plasma membrane monoamine transporter. Therefore, the most direct approach involves constitutive genetic knockout of these transporters. Other groups have reported that knockout of the low-affinity, high-capacity organic cation transporters 2 or 3 alters anxiety-like and stress-coping behaviours, but none have assessed behaviours in plasma membrane monoamine transporter knockout mice. Here, we evaluated adult male and female plasma membrane monoamine transporter wild-type, heterozygous and knockout mice in locomotor, anxiety-like and stress-coping behavioural tests. A mild enhancement of anxiety-related behaviour was noted in heterozygous mice. Active-coping behaviour was modestly and selectively increased in female knockout mice. These subtle behavioural changes support a supplemental role of plasma membrane monoamine transporter in serotonin and dopamine uptake, and suggest sex differences in transporter function should be examined more closely in future investigations.

SELECTION OF CITATIONS
SEARCH DETAIL