Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Domest Anim Endocrinol ; 74: 106530, 2021 01.
Article in English | MEDLINE | ID: mdl-32818904

ABSTRACT

Although it is understood that equine endocrinopathic laminitis can be triggered by high concentrations of insulin, it is unclear whether this represents a direct action on lamellar tissue via insulin receptors (InsR), an interaction with IGF-1 receptors (IGF-1R), or some other, indirect action. This uncertainty is because of the reported scarcity of InsR in lamellar tissue and the low affinity of insulin for equine IGF-1R. In the present study, the effects of insulin and IGF-1 (as a positive control) were examined using lamellar explants isolated from the hooves of healthy horses and incubated in cell culture medium for between 2 min and 48 h. In this system, a low physiological concentration of IGF-1 (10 nM; 1.31 ng/mL) caused a marked increase in the appearance of phosphorylated IGF-1R after 5 min (P < 0.05), and this effect was blocked by a human anti-IGF-1R monoclonal antibody (mAb). However, a high concentration of insulin (10 nM; 1,430 µIU/mL) appeared to cause dephosphorylation of the IGF-1R after 5 min (P < 0.01), 15 min, and 30 min (P < 0.001). Using 3H-thymidine as a marker, it was also demonstrated that insulin and IGF-1-stimulated cell proliferation in lamellar explants over the same concentration range as each other (1-100 nM), implying that each peptide acts via its own receptor (P < 0.001). Conversely, the effect of both peptides could be blocked using a selective anti-IGF-1R mAb (P < 0.001), implying that insulin acts via IGF1-R (either directly or indirectly). Notwithstanding this conundrum, the results demonstrate that insulin acts directly on lamellar tissue and suggest that a therapeutic anti-IGF-1R mAb could be useful in treating or preventing endocrinopathic laminitis.


Subject(s)
Gene Expression Regulation/drug effects , Hoof and Claw/metabolism , Horses/metabolism , Insulin/pharmacology , Receptor, IGF Type 1/metabolism , Tissue Culture Techniques/veterinary , Animals , Antibodies, Monoclonal , Blotting, Western , Cell Proliferation , Receptor, IGF Type 1/genetics
2.
Vet J ; 214: 14-20, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27387720

ABSTRACT

The relationships between diet, obesity and insulin dysregulation in equids require further investigation due to their association with laminitis. This study examined the effect of dietary glycaemic load and increased adiposity on insulin sensitivity and adipokine concentrations in different equine breeds. Equal numbers of Standardbred horses, mixed-breed ponies and Andalusian horses were provided with ad libitum hay plus either cereal-rich (CHO; n = 12), fat-rich (FAT; n = 12) or control (CON; n = 9) meals over 20 weeks. The isocaloric CHO and FAT diets were fed to induce obesity by gradually increasing the supplementary feeds to provide 200% of daily digestible energy requirements by Week 20. The CON group were fed a basal ration only and maintained moderate body condition. At Week 20, the CHO and FAT groups demonstrated significantly increased body condition score, bodyweight, total body fat mass and plasma leptin concentrations compared with the CON group (P <0.001). The CHO group had lower insulin sensitivity (SI; P <0.001) and higher acute insulin response to glucose (P = 0.002) than the CON group. In contrast, the FAT group was no different to the control group. Ponies and Andalusians had lower SI values compared with Standardbreds, regardless of diet group (P = 0.001). Adiponectin concentrations were similar between the FAT and CON groups, but were significantly lower in the CHO group (P = 0.010). The provision of cereal-rich meals appeared to be a more important determinant of insulin sensitivity than the induction of obesity per se. Whether hypoadiponectinaemia is a cause or consequence of insulin dysregulation warrants further investigation.


Subject(s)
Adipokines/metabolism , Adiposity , Dietary Fats/analysis , Edible Grain , Glycemic Load , Horse Diseases/physiopathology , Insulin Resistance/physiology , Animal Feed/analysis , Animal Nutritional Physiological Phenomena/drug effects , Animals , Diet/veterinary , Dietary Supplements/analysis , Female , Horse Diseases/genetics , Horses , Male
3.
J Anim Sci ; 93(7): 3377-83, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26440006

ABSTRACT

The enteroinsular axis is a complex system that includes the release of incretin hormones from the gut to promote the absorption and utilization of glucose after a meal. The insulinogenic effect of incretin hormones such as glucagon-like peptide-1 (GLP-1) remains poorly characterized in the horse. The aim of this study was to compare postprandial glucose, insulin, and GLP-1 responses of different equine breeds adapted to twice-daily meals containing micronized maize. Four Standardbred horses, 4 mixed-breed ponies, and 4 Andalusian cross horses in moderate BCS (5.5 ± 0.2 out of 9) were fed meals at 0800 and 1600 h each day. The meals contained micronized maize (mixed with soaked soybean hulls and lucerne chaff), with the amount of maize gradually increased over 12 wk to reach a final quantity of 1.7 g/kg BW (1.1 g/kg BW starch) in each meal. Animals had ad libitum access to the same hay throughout. After 12 wk of acclimation, serial blood samples were collected from all animals over a 14-h period to measure concentrations of glucose, insulin, and GLP-1, with meals fed immediately after the 0 and 8 h samples. Glucose area under the curve (AUC) values were similar between breed groups (P = 0.41); however, ponies and Andalusian horses exhibited significantly higher insulin AUC values after both meals compared with Standardbred horses (both P < 0.005). Postprandial GLP-1 AUC values were also significantly higher in ponies and Andalusian horses compared with Standardbred horses (breed × time interaction; P < 0.001). Correlation analysis demonstrated a strong positive association between concentrations of insulin and GLP-1 over time (rs = 0.752; P < 0.001). The increased insulin concentrations in ponies and Andalusian horses may partly reflect lower insulin sensitivity but could also be attributed to increased GLP-1 release. Given that hyperinsulinemia is a recognized risk factor for the development of laminitis in domestic equids, this study provides evidence that the enteroinsular axis warrants further investigation.


Subject(s)
Animal Feed/analysis , Food Handling , Glucagon-Like Peptide 1/blood , Horses/physiology , Insulin/blood , Zea mays , Animal Nutritional Physiological Phenomena , Animals , Blood Glucose/analysis , Breeding , Diet/veterinary , Gastric Inhibitory Polypeptide , Glucagon/metabolism , Horses/genetics , Insulin Resistance , Postprandial Period
SELECTION OF CITATIONS
SEARCH DETAIL