Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Stem Cell ; 29(1): 160-175.e7, 2022 01 06.
Article in English | MEDLINE | ID: mdl-34847364

ABSTRACT

Human organoids allow the study of proliferation, lineage specification, and 3D tissue development. Here we present a genome-wide CRISPR screen in induced pluripotent stem cell (iPSC)-derived kidney organoids. The combination of inducible genome editing, longitudinal sampling, and endpoint sorting of tubular and stromal cells generated a complex, high-quality dataset uncovering a broad spectrum of insightful biology from early development to "adult" epithelial morphogenesis. Our functional dataset allows improving mesoderm induction by ROCK inhibition, contains monogenetic and complex trait kidney disease genes, confirms two additional congenital anomalies of the kidney and urinary tract (CAKUT) genes (CCDC170 and MYH7B), and provides a large candidate list of ciliopathy-related genes. Finally, identification of a cis-inhibitory effect of Jagged1 controlling epithelial proliferation shows how mosaic knockouts in pooled CRISPR screening can reveal ways of communication between heterogeneous cell populations in complex tissues. These data serve as a rich resource for the kidney research community and as a benchmark for future iPSC-derived organoid CRISPR screens.


Subject(s)
Induced Pluripotent Stem Cells , Organoids , Gene Editing , Humans , Kidney , Organogenesis
2.
Adv Healthc Mater ; 7(9): e1701393, 2018 05.
Article in English | MEDLINE | ID: mdl-29441702

ABSTRACT

Hydrogels are under active development for controlled drug delivery, but their clinical translation is limited by low drug loading capacity, deficiencies in mechanical toughness and storage stability, and poor control over the drug release that often results in burst release and short release duration. This work reports a design of composite clay hydrogels, which simultaneously achieve a spectrum of mechanical, storage, and drug loading/releasing properties to address the critical needs from translational perspectives. The clay nanoparticles provide large surface areas to adsorb biological drugs, and assemble into microparticles that are physically trapped within and toughen hydrogel networks. The composite hydrogels demonstrate feasibility of storage, and extended release of large quantities of an insulin-like growth factor-1 mimetic protein (8 mg mL-1 ) over four weeks. The release rate is primarily governed by ionic exchange and can be upregulated by low pH, which is typical for injured tissues. A rodent model of Achilles tendon injury is used to demonstrate that the composite hydrogels allow for highly extended and localized release of biological drugs in vivo, while demonstrating biodegradation and biocompatibility. These attributes make the composite hydrogel a promising system for drug delivery and regenerative medicine.


Subject(s)
Achilles Tendon , Biomimetic Materials , Drug Carriers , Hydrogels , Insulin-Like Growth Factor I , Peptides , Tendon Injuries , Achilles Tendon/metabolism , Achilles Tendon/pathology , Animals , Biomimetic Materials/chemistry , Biomimetic Materials/pharmacokinetics , Biomimetic Materials/pharmacology , Delayed-Action Preparations/chemistry , Delayed-Action Preparations/pharmacokinetics , Delayed-Action Preparations/pharmacology , Drug Carriers/chemistry , Drug Carriers/pharmacokinetics , Drug Carriers/pharmacology , Female , Humans , Hydrogels/chemistry , Hydrogels/pharmacokinetics , Hydrogels/pharmacology , Mice , NIH 3T3 Cells , Peptides/chemistry , Peptides/pharmacokinetics , Peptides/pharmacology , Rats , Rats, Sprague-Dawley , Tendon Injuries/drug therapy , Tendon Injuries/metabolism , Tendon Injuries/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...