Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Water Res ; 236: 119969, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37099862

ABSTRACT

There is growing global concern that greenhouse gas (GHG) emissions from water bodies are increasing because of interactions between nutrient levels and climate warming. This paper investigates key land-cover, seasonal and hydrological controls of GHGs by comparison of the semi-natural, agricultural and urban environments in a detailed source-to-sea study of the River Clyde, Scotland. Riverine GHG concentrations were consistently oversaturated with respect to the atmosphere. High riverine concentrations of methane (CH4) were primarily associated with point source inflows from urban wastewater treatment, abandoned coal mines and lakes, with CH4-C concentrations between 0.1 - 44 µg l-1. Concentrations of carbon dioxide (CO2) and nitrous oxide (N2O) were mainly driven by nitrogen concentrations, dominated by diffuse agricultural inputs in the upper catchment and supplemented by point source inputs from urban wastewater in the lower urban catchment, with CO2-C concentrations between 0.1 - 2.6 mg l-1 and N2O-N concentrations between 0.3 - 3.4 µg l-1. A significant and disproportionate increase in all GHGs occurred in the lower urban riverine environment in the summer, compared to the semi-natural environment, where GHG concentrations were higher in winter. This increase and change in GHG seasonal patterns points to anthropogenic impacts on microbial communities. The loss of total dissolved carbon, to the estuary is approximately 48.4 ± 3.6 Gg C yr-1, with the annual inorganic carbon export approximately double that of organic carbon and four times that of CO2, with CH4 accounting for 0.03%, with the anthropogenic impact of disused coal mines accelerating DIC loss. The annual loss of total dissolved nitrogen to the estuary is approximately 4.03 ± 0.38 Gg N yr-1 of which N2O represents 0.06%. This study improves our understanding of riverine GHG generation and dynamics which can contribute to our knowledge of their release to the atmosphere. It identifies where action could support reductions in aquatic GHG generation and emission.


Subject(s)
Greenhouse Gases , Greenhouse Gases/analysis , Carbon Dioxide , Greenhouse Effect , Rivers , Nitrogen , Coal , Methane/analysis , Nitrous Oxide/analysis , Soil
2.
PeerJ ; 10: e13116, 2022.
Article in English | MEDLINE | ID: mdl-35402104

ABSTRACT

Benthic incubation chambers facilitate in-situ metabolism studies in shallow water environments. They are used to isolate the water surrounding a study organism or community so that changes in water chemistry can be quantified to characterise physiological processes such as photosynthesis, respiration, and calcification. Such field measurements capture the biological processes taking place within the benthic community while incorporating the influence of environmental variables that are often difficult to recreate in ex-situ settings. Variations in benthic chamber designs have evolved for a range of applications. In this study, we built upon previous designs to create a novel chamber, which is (1) low-cost and assembled without specialised equipment, (2) easily reproducible, (3) minimally invasive, (4) adaptable to varied substrates, and (5) comparable with other available designs in performance. We tested the design in the laboratory and field and found that it achieved the outlined objectives. Using non-specialised materials, we were able to construct the chamber at a low cost (under $20 USD per unit), while maintaining similar performance and reproducibility with that of existing designs. Laboratory and field tests demonstrated minimal leakage (2.08 ± 0.78% water exchange over 4 h) and acceptable light transmission (86.9 ± 1.9%), results comparable to those reported for other chambers. In the field, chambers were deployed in a shallow coastal environment in Akumal, Mexico, to measure productivity of seagrass, and coral-, algae-, and sand-dominated reef patches. In both case studies, production rates aligned with those of comparable benthic chamber deployments in the literature and followed established trends with light, the primary driver of benthic metabolism, indicating robust performance under field conditions. We demonstrate that our low-cost benthic chamber design uses locally accessible and minimal resources, is adaptable for a variety of field settings, and can be used to collect reliable and repeatable benthic metabolism data. This chamber has the potential to broaden accessibility and applications of in-situ incubations for future studies.


Subject(s)
Anthozoa , Coral Reefs , Animals , Ecosystem , Reproducibility of Results , Anthozoa/physiology , Water
3.
Mar Pollut Bull ; 174: 113240, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35090288

ABSTRACT

Biologically productive regions such as estuaries and coastal areas, even though they only cover a small percentage of the world's oceans, contribute significantly to methane and nitrous oxide emissions. This paper synthesises greenhouse gas data measured in UK estuary studies, highlighting that urban wastewater loading is significantly correlated with both methane (P < 0.001) and nitrous oxide (P < 0.005) concentrations. It demonstrates that specific estuary typologies render them more sensitive to anthropogenic influences on greenhouse gas production, particularly estuaries that experience low oxygen levels due to reduced mixing and stratification or high sediment oxygen demand. Significantly, we find that estuaries with high urban wastewater loading may be hidden sources of greenhouse gases globally. Synthesising available information, a conceptual model for greenhouse gas concentrations in estuaries with different morphologies and mixing regimes is presented. Applications of this model should help identification of estuaries susceptible to anthropogenic impacts and potential hotspots for greenhouse gas emissions.


Subject(s)
Greenhouse Gases , Anthropogenic Effects , Estuaries , Methane/analysis , Nitrous Oxide/analysis
4.
Sci Total Environ ; 550: 459-470, 2016 Apr 15.
Article in English | MEDLINE | ID: mdl-26845182

ABSTRACT

The addition of organic amendments to agricultural soils has the potential to increase crop yields, reduce dependence on inorganic fertilizers and improve soil condition and resilience. We evaluated the effect of biochar (B), compost (C) and co-composted biochar (COMBI) on the soil properties, crop yield and greenhouse gas emissions from a banana and a papaya plantation in tropical Australia in the first harvest cycle. Biochar, compost and COMBI organic amendments improved soil properties, including significant increases in soil water content, CEC, K, Ca, NO3, NH4 and soil carbon content. However, increases in soil nutrient content and improvements in physical properties did not translate to improved fruit yield. Counter to our expectations, banana crop yield (weight per bunch) was reduced by 18%, 12% and 24% by B, C and COMBI additions respectively, and no significant effect was observed on the papaya crop yield. Soil efflux of CO2 was elevated by addition of C and COMBI amendments, likely due to an increase in labile carbon for microbial processing. Our data indicate a reduction in N2O flux in treatments containing biochar. The application of B, C and COMBI amendments had a generally positive effect on soil properties, but this did not translate into a crop productivity increase in this study. The benefits to soil nutrient content, soil carbon storage and N2O emission reduction need to be carefully weighed against potentially deleterious effects on crop yield, at least in the short-term.


Subject(s)
Agriculture/methods , Air Pollutants/analysis , Charcoal , Fertilizers , Australia , Carbon Dioxide/analysis , Environmental Monitoring , Greenhouse Effect , Nitrous Oxide/analysis , Soil/chemistry
5.
Sci Total Environ ; 543(Pt A): 295-306, 2016 Feb 01.
Article in English | MEDLINE | ID: mdl-26590867

ABSTRACT

Soil quality decline represents a significant constraint on the productivity and sustainability of agriculture in the tropics. In this study, the influence of biochar, compost and mixtures of the two on soil fertility, maize yield and greenhouse gas (GHG) emissions was investigated in a tropical Ferralsol. The treatments were: 1) control with business as usual fertilizer (F); 2) 10 t ha(-1) biochar (B)+F; 3) 25 t ha(-1) compost (Com)+F; 4) 2.5 t ha(-1) B+25 t ha(-1) Com mixed on site+F; and 5) 25 t ha(-1) co-composted biochar-compost (COMBI)+F. Total aboveground biomass and maize yield were significantly improved relative to the control for all organic amendments, with increases in grain yield between 10 and 29%. Some plant parameters such as leaf chlorophyll were significantly increased by the organic treatments. Significant differences were observed among treatments for the δ(15)N and δ(13)C contents of kernels. Soil physicochemical properties including soil water content (SWC), total soil organic carbon (SOC), total nitrogen (N), available phosphorus (P), nitrate-nitrogen (NO3(-)N), ammonium-nitrogen (NH4(+)-N), exchangeable cations and cation exchange capacity (CEC) were significantly increased by the organic amendments. Maize grain yield was correlated positively with total biomass, leaf chlorophyll, foliar N and P content, SOC and SWC. Emissions of CO2 and N2O were higher from the organic-amended soils than from the fertilizer-only control. However, N2O emissions generally decreased over time for all treatments and emission from the biochar was lower compared to other treatments. Our study concludes that the biochar and biochar-compost-based soil management approaches can improve SOC, soil nutrient status and SWC, and maize yield and may help mitigate greenhouse gas emissions in certain systems.


Subject(s)
Agriculture , Air Pollutants/analysis , Charcoal , Fertilizers , Soil/chemistry , Zea mays/growth & development , Biomass , Greenhouse Effect , Nitrates/analysis , Nitrogen/analysis , Phosphorus/analysis , Plant Leaves , Tropical Climate
6.
Isotopes Environ Health Stud ; 49(2): 232-42, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23323571

ABSTRACT

Measurement of soil-respired CO2 at high temporal resolution and sample density is necessary to accurately identify sources and quantify effluxes of soil-respired CO2. A portable sampling device for the analysis of δ(13)C values in the field is described herein. CO2 accumulated in a soil chamber was batch sampled sequentially in four gas bags and analysed by Wavelength-Scanned Cavity Ring-down Spectrometry (WS-CRDS). A Keeling plot (1/[CO2] versus δ(13)C) was used to derive δ(13)C values of soil-respired CO2. Calibration to the δ(13)C Vienna Peedee Belemnite scale was by analysis of cylinder CO2 and CO2 derived from dissolved carbonate standards. The performance of gas-bag analysis was compared to continuous analysis where the WS-CRDS analyser was connected directly to the soil chamber. Although there are inherent difficulties in obtaining absolute accuracy data for δ(13)C values in soil-respired CO2, the similarity of δ(13)C values obtained for the same test soil with different analytical configurations indicated that an acceptable accuracy of the δ(13)C data were obtained by the WS-CRDS techniques presented here. Field testing of a variety of tropical soil/vegetation types, using the batch sampling technique yielded δ(13)C values for soil-respired CO2 related to the dominance of either C3 (tree, δ(13)C=-27.8 to-31.9 ‰) or C4 (tropical grass, δ(13)C=-9.8 to-13.6 ‰) photosynthetic pathways in vegetation at the sampling sites. Standard errors of the Keeling plot intercept δ(13)C values of soil-respired CO2 were typically<0.4 ‰ for analysis of soils with high CO2 efflux (>7-9 µmol m(-2) s(-1)).


Subject(s)
Carbon Cycle , Carbon Dioxide/analysis , Carbon Isotopes/analysis , Environmental Monitoring/methods , Mass Spectrometry/methods , Soil/chemistry , Environmental Monitoring/instrumentation , Equipment Design , Mass Spectrometry/instrumentation
7.
Rapid Commun Mass Spectrom ; 26(6): 639-44, 2012 Mar 30.
Article in English | MEDLINE | ID: mdl-22328217

ABSTRACT

RATIONALE: Quantifying the processes that control dissolved inorganic carbon (DIC) dynamics in aquatic systems is essential for progress in ecosystem carbon budgeting. The development of a methodology that allows high-resolution temporal data collection over prolonged periods is essential and is described in this study. METHODS: A novel sampling instrument that sequentially acidifies aliquots of water and utilises gas-permeable ePTFE tubing to measure the dissolved inorganic carbon (DIC) concentration and δ(13)C(DIC) values at sub-hourly intervals by Cavity Ring-down spectrometry (CRDS) is described. RESULTS: The minimum sensitivity of the isotopic, continuous, automated dissolved inorganic carbon analyser (ISO-CADICA) system is 0.01 mM with an accuracy of 0.008 mM. The analytical uncertainty in δ(13)C(DIC) values is proportional to the concentration of DIC in the sample. Where the DIC concentration is greater than 0.3 mM the analytical uncertainty is ±0.1‰ and below 0.2 mM stability is < ± 0.3‰. The isotopic effects of air temperature, water temperature and CO(2) concentrations were found to either be negligible or correctable. Field trials measuring diel variation in δ(13)C(DIC) values of coral reef associated sea water revealed significant, short-term temporal changes and illustrated the necessity of this technique. CONCLUSIONS: Currently, collecting and analysing large numbers of samples for δ(13)C(DIC) measurements is not trivial, but essential for accurate carbon models, particularly on small scales. The ISO-CADICA enables on-site, high-resolution determination of DIC concentration and δ(13)C(DIC) values with no need for sample storage and laboratory analysis. The initial tests indicate that this system can offer accuracy approaching that of traditional IRMS analysis.

8.
Bioresour Technol ; 102(2): 1886-91, 2011 Jan.
Article in English | MEDLINE | ID: mdl-20797850

ABSTRACT

This study presents baseline data on the physiochemical properties and potential uses of macroalgal (seaweed) biochar produced by pyrolysis of eight species of green tide algae sourced from fresh, brackish and marine environments. All of the biochars produced are comparatively low in carbon content, surface area and cation exchange capacity, but high in pH, ash, nitrogen and extractable inorganic nutrients including P, K, Ca and Mg. The biochars are more similar in characteristics to those produced from poultry litter relative to those derived from ligno-cellulosic feedstocks. This means that, like poultry litter biochar, macroalgal biochar has properties that provide direct nutrient benefits to soils and thereby to crop productivity, and will be particularly useful for application on acidic soils. However, macroalgal biochars are volumetrically less able to provide the carbon sequestration benefits of the high carbon ligno-cellulosic biochars.


Subject(s)
Charcoal/chemistry , Charcoal/chemical synthesis , Eukaryota/chemistry , Species Specificity , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...