Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 102
Filter
Add more filters










Publication year range
1.
Phys Rev Lett ; 126(6): 062501, 2021 Feb 12.
Article in English | MEDLINE | ID: mdl-33635678

ABSTRACT

In an emulsion-counter hybrid experiment performed at J-PARC, a Ξ^{-} absorption event was observed which decayed into twin single-Λ hypernuclei. Kinematic calculations enabled a unique identification of the reaction process as Ξ^{-}+^{14}N→_{Λ}^{10}Be+_{Λ}^{5}He. For the binding energy of the Ξ^{-} hyperon in the Ξ^{-}-^{14}N system a value of 1.27±0.21 MeV was deduced. The energy level of Ξ^{-} is likely a nuclear 1p state which indicates a weak ΞN-ΛΛ coupling.

3.
Phys Rev Lett ; 123(2): 022301, 2019 Jul 12.
Article in English | MEDLINE | ID: mdl-31386493

ABSTRACT

The PHENIX collaboration presents first measurements of low-momentum (0.41 GeV/c) direct-photon yield dN_{γ}^{dir}/dη is a smooth function of dN_{ch}/dη and can be well described as proportional to (dN_{ch}/dη)^{α} with α≈1.25. This scaling behavior holds for a wide range of beam energies at the Relativistic Heavy Ion Collider and the Large Hadron Collider, for centrality selected samples, as well as for different A+A collision systems. At a given beam energy, the scaling also holds for high p_{T} (>5 GeV/c), but when results from different collision energies are compared, an additional sqrt[s_{NN}]-dependent multiplicative factor is needed to describe the integrated-direct-photon yield.

4.
Phys Rev Lett ; 116(12): 122301, 2016 Mar 25.
Article in English | MEDLINE | ID: mdl-27058071

ABSTRACT

Jet production rates are measured in p+p and d+Au collisions at sqrt[s_{NN}]=200 GeV recorded in 2008 with the PHENIX detector at the Relativistic Heavy Ion Collider. Jets are reconstructed using the R=0.3 anti-k_{t} algorithm from energy deposits in the electromagnetic calorimeter and charged tracks in multiwire proportional chambers, and the jet transverse momentum (p_{T}) spectra are corrected for the detector response. Spectra are reported for jets with 12

5.
Phys Rev Lett ; 115(14): 142301, 2015 Oct 02.
Article in English | MEDLINE | ID: mdl-26551807

ABSTRACT

We present the first measurement of elliptic (v(2)) and triangular (v(3)) flow in high-multiplicity (3)He+Au collisions at √(s(NN))=200 GeV. Two-particle correlations, where the particles have a large separation in pseudorapidity, are compared in (3)He+Au and in p+p collisions and indicate that collective effects dominate the second and third Fourier components for the correlations observed in the (3)He+Au system. The collective behavior is quantified in terms of elliptic v(2) and triangular v(3) anisotropy coefficients measured with respect to their corresponding event planes. The v(2) values are comparable to those previously measured in d+Au collisions at the same nucleon-nucleon center-of-mass energy. Comparisons with various theoretical predictions are made, including to models where the hot spots created by the impact of the three (3)He nucleons on the Au nucleus expand hydrodynamically to generate the triangular flow. The agreement of these models with data may indicate the formation of low-viscosity quark-gluon plasma even in these small collision systems.

6.
Phys Rev Lett ; 114(19): 192301, 2015 May 15.
Article in English | MEDLINE | ID: mdl-26024164

ABSTRACT

We present azimuthal angular correlations between charged hadrons and energy deposited in calorimeter towers in central d+Au and minimum bias p+p collisions at sqrt[s_{NN}]=200 GeV. The charged hadron is measured at midrapidity |η|<0.35, and the energy is measured at large rapidity (-3.7<η<-3.1, Au-going direction). An enhanced near-side angular correlation across |Δη|>2.75 is observed in d+Au collisions. Using the event plane method applied to the Au-going energy distribution, we extract the anisotropy strength v_{2} for inclusive charged hadrons at midrapidity up to p_{T}=4.5 GeV/c. We also present the measurement of v_{2} for identified π^{±} and (anti)protons in central d+Au collisions, and observe a mass-ordering pattern similar to that seen in heavy-ion collisions. These results are compared with viscous hydrodynamic calculations and measurements from p+Pb at sqrt[s_{NN}]=5.02 TeV. The magnitude of the mass ordering in d+Au is found to be smaller than that in p+Pb collisions, which may indicate smaller radial flow in lower energy d+Au collisions.

7.
Phys Rev Lett ; 112(25): 252301, 2014 Jun 27.
Article in English | MEDLINE | ID: mdl-25014805

ABSTRACT

The PHENIX experiment has measured open heavy-flavor production via semileptonic decay over the transverse momentum range 1 < p(T) < 6 GeV/c at forward and backward rapidity (1.4 < |y| < 2.0) in d+Au and p + p collisions at √sNN = 200 GeV. In central d+Au collisions, relative to the yield in p + p collisions scaled by the number of binary nucleon-nucleon collisions, a suppression is observed at forward rapidity (in the d-going direction) and an enhancement at backward rapidity (in the Au-going direction). Predictions using nuclear-modified-parton-distribution functions, even with additional nuclear-p(T) broadening, cannot simultaneously reproduce the data at both rapidity ranges, which implies that these models are incomplete and suggests the possible importance of final-state interactions in the asymmetric d + Au collision system. These results can be used to probe cold-nuclear-matter effects, which may significantly affect heavy-quark production, in addition to helping constrain the magnitude of charmonia-breakup effects in nuclear matter.

8.
Phys Rev Lett ; 112(22): 222301, 2014 Jun 06.
Article in English | MEDLINE | ID: mdl-24949761

ABSTRACT

Charged-pion-interferometry measurements were made with respect to the second- and third-order event plane for Au+Au collisions at sqrt[s_{NN}]=200 GeV. A strong azimuthal-angle dependence of the extracted Gaussian-source radii was observed with respect to both the second- and third-order event planes. The results for the second-order dependence indicate that the initial eccentricity is reduced during the medium evolution, which is consistent with previous results. In contrast, the results for the third-order dependence indicate that the initial triangular shape is significantly reduced and potentially reversed by the end of the medium evolution, and that the third-order oscillations are largely dominated by the dynamical effects from triangular flow.

9.
Phys Rev Lett ; 111(20): 202301, 2013 Nov 15.
Article in English | MEDLINE | ID: mdl-24289677

ABSTRACT

We present results for three charmonia states (ψ', χc, and J/ψ) in d+Au collisions at |y|<0.35 and sqrt[s(NN)]=200 GeV. We find that the modification of the ψ' yield relative to that of the J/ψ scales approximately with charged particle multiplicity at midrapidity across p+A, d+Au, and A+A results from the Super Proton Synchrotron and the Relativistic Heavy Ion Collider. In large-impact-parameter collisions we observe a similar suppression for the ψ' and J/ψ, while in small-impact-parameter collisions the more weakly bound ψ' is more strongly suppressed. Owing to the short time spent traversing the Au nucleus, the larger ψ' suppression in central events is not explained by an increase of the nuclear absorption owing to meson formation time effects.

10.
Phys Rev Lett ; 111(21): 212301, 2013 Nov 22.
Article in English | MEDLINE | ID: mdl-24313481

ABSTRACT

The PHENIX collaboration at the Relativistic Heavy Ion Collider (RHIC) reports measurements of azimuthal dihadron correlations near midrapidity in d+Au collisions at √(s(NN))=200 GeV. These measurements complement recent analyses by experiments at the Large Hadron Collider (LHC) involving central p+Pb collisions at √(s(NN))=5.02 TeV, which have indicated strong anisotropic long-range correlations in angular distributions of hadron pairs. The origin of these anisotropies is currently unknown. Various competing explanations include parton saturation and hydrodynamic flow. We observe qualitatively similar, but larger, anisotropies in d+Au collisions at RHIC compared to those seen in p+Pb collisions at the LHC. The larger extracted v2 values in d+Au are consistent with expectations from hydrodynamic calculations owing to the larger expected initial-state eccentricity compared with that from p+Pb collisions. When both are divided by an estimate of the initial-state eccentricity the scaled anisotropies follow a common trend with multiplicity that may extend to heavy ion data at RHIC and the LHC, where the anisotropies are widely thought to arise from hydrodynamic flow.

11.
Phys Rev Lett ; 111(3): 032301, 2013 Jul 19.
Article in English | MEDLINE | ID: mdl-23909311

ABSTRACT

The jet fragmentation function is measured with direct photon-hadron correlations in p+p and Au+Au collisions at √[s(NN)]=200 GeV. The p(T) of the photon is an excellent approximation to the initial p(T) of the jet and the ratio z(T)=p(T)(h)/p(T)(γ) is used as a proxy for the jet fragmentation function. A statistical subtraction is used to extract the direct photon-hadron yields in Au+Au collisions while a photon isolation cut is applied in p+p. I(AA), the ratio of hadron yield opposite the photon in Au+Au to that in p+p, indicates modification of the jet fragmentation function. Suppression, most likely due to energy loss in the medium, is seen at high z(T). The associated hadron yield at low z(T) is enhanced at large angles. Such a trend is expected from redistribution of the lost energy into increased production of low-momentum particles.

12.
Phys Rev Lett ; 109(13): 132002, 2012 Sep 28.
Article in English | MEDLINE | ID: mdl-23030084

ABSTRACT

The Θ(+) pentaquark baryon was searched for via the π(-)p→K(-)X reaction with a missing mass resolution of 1.4 MeV/c(2) (FWHM) at the Japan Proton Accelerator Research Complex (J-PARC). π(-) meson beams were incident on the liquid hydrogen target with a beam momentum of 1.92 GeV/c. No peak structure corresponding to the Θ(+) mass was observed. The upper limit of the production cross section averaged over the scattering angle of 2° to 15° in the laboratory frame is obtained to be 0.26 µb/sr in the mass region of 1.51-1.55 GeV/c(2). The upper limit of the Θ(+) decay width is obtained to be 0.72 and 3.1 MeV for J(Θ)(P)=1/2(+) and J(Θ)(P)=1/2(-), respectively, using the effective Lagrangian approach.

15.
Phys Rev Lett ; 109(12): 122302, 2012 Sep 21.
Article in English | MEDLINE | ID: mdl-23005942

ABSTRACT

The second Fourier component v(2) of the azimuthal anisotropy with respect to the reaction plane is measured for direct photons at midrapidity and transverse momentum (p(T)) of 1-12 GeV/c in Au + Au collisions at √s(NN)] = 200 GeV. Previous measurements of this quantity for hadrons with p(T) < 6 GeV/c indicate that the medium behaves like a nearly perfect fluid, while for p(T) > 6 GeV/c a reduced anisotropy is interpreted in terms of a path-length dependence for parton energy loss. In this measurement with the PHENIX detector at the Relativistic Heavy Ion Collider we find that for p(T) > 4 GeV/c the anisotropy for direct photons is consistent with zero, which is as expected if the dominant source of direct photons is initial hard scattering. However, in the p(T) < 4 GeV/c region dominated by thermal photons, we find a substantial direct-photon v(2) comparable to that of hadrons, whereas model calculations for thermal photons in this kinematic region underpredict the observed v(2).

16.
Phys Rev Lett ; 109(24): 242301, 2012 Dec 14.
Article in English | MEDLINE | ID: mdl-23368311

ABSTRACT

The PHENIX experiment has measured electrons and positrons at midrapidity from the decays of hadrons containing charm and bottom quarks produced in d+Au and p+p collisions at sqrt[S(NN)]=200 GeV in the transverse-momentum range 0.85 ≤ p(T)(e) ≤ 8.5 GeV/c. In central d+Au collisions, the nuclear modification factor R(dA) at 1.5

17.
Phys Rev Lett ; 107(14): 142301, 2011 Sep 30.
Article in English | MEDLINE | ID: mdl-22107186

ABSTRACT

We present measurements of J/ψ yields in d+Au collisions at sqrt[s(NN)]=200 GeV recorded by the PHENIX experiment and compare them with yields in p+p collisions at the same energy per nucleon-nucleon collision. The measurements cover a large kinematic range in J/ψ rapidity (-2.2

18.
Phys Rev Lett ; 107(17): 172301, 2011 Oct 21.
Article in English | MEDLINE | ID: mdl-22107509

ABSTRACT

Back-to-back hadron pair yields in d+Au and p+p collisions at √s(NN)=200 GeV were measured with the PHENIX detector at the Relativistic Heavy Ion Collider. Rapidity separated hadron pairs were detected with the trigger hadron at pseudorapidity |η|<0.35 and the associated hadron at forward rapidity (deuteron direction, 3.0<η<3.8). Pairs were also detected with both hadrons measured at forward rapidity; in this case, the yield of back-to-back hadron pairs in d+Au collisions with small impact parameters is observed to be suppressed by a factor of 10 relative to p+p collisions. The kinematics of these pairs is expected to probe partons in the Au nucleus with a low fraction x of the nucleon momenta, where the gluon densities rise sharply. The observed suppression as a function of nuclear thickness, p(T), and η points to cold nuclear matter effects arising at high parton densities.

19.
Phys Rev Lett ; 106(6): 062001, 2011 Feb 11.
Article in English | MEDLINE | ID: mdl-21405459

ABSTRACT

Large parity-violating longitudinal single-spin asymmetries A(L)(e+) = -0.86(-0.14) (+0.30) and A(L)(e-) = 0.88(-0.71) (+0.12) are observed for inclusive high transverse momentum electrons and positrons in polarized p+p collisions at a center-of-mass energy of sqrt[s] = 500 GeV with the PHENIX detector at RHIC. These e± come mainly from the decay of W± and Z0 bosons, and their asymmetries directly demonstrate parity violation in the couplings of the W± to the light quarks. The observed electron and positron yields were used to estimate W± boson production cross sections for the e± channels of σ(pp → W+ X) × BR(W+ → e+ ν(e)) = 144.1 ± 21.2(stat)(-10.3) (+3.4) (syst) ± 21.6(norm) pb, and σ(pp → W- X) × BR(W- → e- ν[over ¯](e)) = 31.7 ± 12.1(stat)(-8.2) (+10.1) (syst) ± 4.8(norm) pb.

20.
Phys Rev Lett ; 107(25): 252301, 2011 Dec 16.
Article in English | MEDLINE | ID: mdl-22243067

ABSTRACT

Flow coefficients ν(n) for n=2, 3, 4, characterizing the anisotropic collective flow in Au+Au collisions at √s(NN)=200 GeV, are measured relative to event planes Ψ(n), determined at large rapidity. We report ν(n) as a function of transverse momentum and collision centrality, and study the correlations among the event planes of different order n. The ν(n) are well described by hydrodynamic models which employ a Glauber Monte Carlo initial state geometry with fluctuations, providing additional constraining power on the interplay between initial conditions and the effects of viscosity as the system evolves. This new constraint can serve to improve the precision of the extracted shear viscosity to entropy density ratio η/s.

SELECTION OF CITATIONS
SEARCH DETAIL
...