Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters











Publication year range
1.
Antonie Van Leeuwenhoek ; 111(9): 1661-1672, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29488182

ABSTRACT

The alcoholic fermentation for fuel ethanol production in Brazil occurs in the presence of several microorganisms present with the starter strain of Saccharomyces cerevisiae in sugarcane musts. It is expected that a multitude of microbial interactions may exist and impact on the fermentation yield. The yeast Dekkera bruxellensis and the bacterium Lactobacillus fermentum are important and frequent contaminants of industrial processes, although reports on the effects of both microorganisms simultaneously in ethanolic fermentation are scarce. The aim of this work was to determine the effects and interactions of both contaminants on the ethanolic fermentation carried out by the industrial yeast S. cerevisiae PE-2 in two different feedstocks (sugarcane juice and molasses) by running multiple batch fermentations with the starter yeast in pure or co-cultures with D. bruxellensis and/or L. fermentum. The fermentations contaminated with D. bruxellensis or L. fermentum or both together resulted in a lower average yield of ethanol, but it was higher in molasses than that of sugarcane juice. The decrease in the CFU number of S. cerevisiae was verified only in co-cultures with both D. bruxellensis and L. fermentum concomitant with higher residual sucrose concentration, lower glycerol and organic acid production in spite of a high reduction in the medium pH in both feedstocks. The growth of D. bruxellensis was stimulated in the presence of L. fermentum resulting in a more pronounced effect on the fermentation parameters than the effects of contamination by each microorganism individually.


Subject(s)
Biofuels/microbiology , Dekkera/metabolism , Ethanol , Fermentation , Industrial Microbiology , Limosilactobacillus fermentum/metabolism , Saccharomyces cerevisiae/metabolism , Acetic Acid , Brazil , Cell Count , Coculture Techniques , Dekkera/growth & development , Glycerol , Hydrogen-Ion Concentration , Limosilactobacillus fermentum/growth & development , Microbial Interactions , Molasses , Saccharomyces cerevisiae/growth & development , Saccharum/metabolism , Saccharum/microbiology , Sucrose
2.
Braz. j. microbiol ; 48(2): 268-274, April.-June 2017. tab, graf
Article in English | LILACS | ID: biblio-839369

ABSTRACT

Abstract Strains of Saccharomyces cerevisiae may display characteristics that are typical of rough-type colonies, made up of cells clustered in pseudohyphal structures and comprised of daughter buds that do not separate from the mother cell post-mitosis. These strains are known to occur frequently in fermentation tanks with significant lower ethanol yield when compared to fermentations carried out by smooth strains of S. cerevisiae that are composed of dispersed cells. In an attempt to delineate genetic and phenotypic differences underlying the two phenotypes, this study analysed 10 microsatellite loci of 22 S. cerevisiae strains as well as stress resistance towards high concentrations of ethanol and glucose, low pH and cell sedimentation rates. The results obtained from the phenotypic tests by Principal-Component Analysis revealed that unlike the smooth colonies, the rough colonies of S. cerevisiae exhibit an enhanced resistance to stressful conditions resulting from the presence of excessive glucose and ethanol and high sedimentation rate. The microsatellite analysis was not successful to distinguish between the colony phenotypes as phenotypic assays. The relevant industrial strain PE-2 was observed in close genetic proximity to rough-colony although it does not display this colony morphology. A unique genetic pattern specific to a particular phenotype remains elusive.


Subject(s)
Saccharomyces cerevisiae/physiology , Saccharomyces cerevisiae/genetics , Genetic Variation , Microsatellite Repeats , Ethanol/metabolism , Phenotype , Saccharomyces cerevisiae/classification , Saccharomyces cerevisiae/metabolism , Stress, Physiological , Genotype , Glucose/metabolism , Hydrogen-Ion Concentration
3.
Braz J Microbiol ; 48(2): 268-274, 2017.
Article in English | MEDLINE | ID: mdl-28057426

ABSTRACT

Strains of Saccharomyces cerevisiae may display characteristics that are typical of rough-type colonies, made up of cells clustered in pseudohyphal structures and comprised of daughter buds that do not separate from the mother cell post-mitosis. These strains are known to occur frequently in fermentation tanks with significant lower ethanol yield when compared to fermentations carried out by smooth strains of S. cerevisiae that are composed of dispersed cells. In an attempt to delineate genetic and phenotypic differences underlying the two phenotypes, this study analysed 10 microsatellite loci of 22 S. cerevisiae strains as well as stress resistance towards high concentrations of ethanol and glucose, low pH and cell sedimentation rates. The results obtained from the phenotypic tests by Principal-Component Analysis revealed that unlike the smooth colonies, the rough colonies of S. cerevisiae exhibit an enhanced resistance to stressful conditions resulting from the presence of excessive glucose and ethanol and high sedimentation rate. The microsatellite analysis was not successful to distinguish between the colony phenotypes as phenotypic assays. The relevant industrial strain PE-2 was observed in close genetic proximity to rough-colony although it does not display this colony morphology. A unique genetic pattern specific to a particular phenotype remains elusive.


Subject(s)
Ethanol/metabolism , Genetic Variation , Microsatellite Repeats , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/physiology , Stress, Physiological , Genotype , Glucose/metabolism , Hydrogen-Ion Concentration , Phenotype , Saccharomyces cerevisiae/classification , Saccharomyces cerevisiae/metabolism
4.
Ciênc. rural (Online) ; 47(9): e20160860, 2017. tab, graf
Article in English | LILACS | ID: biblio-1044960

ABSTRACT

ABSTRACT: The main interest in the energy cane is the bioenergy production from the bagasse. The juice obtained after the cane milling may constitute a feedstock for the first-generation ethanol units; however, little attention has been dedicated to this issue. In order to verify the feasibility of the energy cane juice as substrate for ethanol production, the objectives of this research were first to determine the microbiological characteristics and deterioration along the time of the juices from two clones of energy cane (Type I) and second, their fermentability as feedstock for utilization in ethanol distilleries. There was a clear differentiation in the bacterial and yeast development of the sugarcane juices assayed, being much faster in the energy canes than in sugarcane. The storage of juice for 8 hours at 30oC did not cause impact in alcoholic fermentation for any sample analyzed, although a significant bacterial growth was detected in this period. A decrease of approximately seven percentage points in the fermentative efficiency was observed for energy cane juice in relation to sugarcane in a 24-hour fermentation cycle with the baking yeast. Despite the faster deterioration, the present research demonstrated that the energy cane juice has potential to be used as feedstock in ethanol-producing industries. As far as we know, it is the first research to deal with the characteristics of deterioration and fermentability of energy cane juices.


RESUMO: O principal interesse na cana energia reside na produção de bioenergia a partir do bagaço. O caldo obtido após a moagem da cana pode se constituir em substrato para as unidades de produção de etanol de primeira geração, no entanto, pouca atenção tem sido dispensada a esta questão. O presente trabalho avaliou o caldo de cana energia obtido de dois clones Tipo I como substrato para a produção de etanol, com base na determinação das suas características microbiológicas e deterioração ao longo do tempo, em comparação com o caldo de cana-de-açúcar (variedade RB867515). Foi observada uma clara diferenciação quanto ao crescimento bacteriano e de leveduras nas amostras de caldo analisadas, sendo o crescimento mais rápido no caldo de cana energia que no caldo de cana-de-açúcar. A manutenção do caldo por 8 horas a 30oC não causou impacto sobre a fermentação etanólica para quaisquer das amostras analisadas, apesar do crescimento significativo de bactérias. Houve um decréscimo de aproximadamente sete pontos percentuais na eficiência da fermentação com caldo de cana energia em um ciclo fermentativo de 24 horas com a levedura da panificação, em relação ao caldo da cana-de-açúcar. Apesar de a deterioração do caldo da cana energia ter sido mais rápida que a apresentada pelo caldo de cana-de-açúcar, o presente trabalho demonstrou que o caldo de cana energia tem potencial para ser utilizado como substrato nas indústrias produtoras de etanol. Do que se tem conhecimento, esse é o primeiro trabalho que trata das características de deterioração e fermentabilidade do caldo de cana energia.

5.
N Biotechnol ; 31(1): 90-7, 2014 Jan 25.
Article in English | MEDLINE | ID: mdl-24013100

ABSTRACT

Saccharomyces cerevisiae is the most important microorganism used in the ethanol fermentation process. The PE-2 strain of this yeast is widely used to produce alcohol in Brazil due to its high fermentation capacity. The aim of the present study was to develop an expression system for recombinant proteins using the industrial PE-2 strain of S. cerevisiae during the alcoholic fermentation process. The protein chosen as a model for this system was CaneCPI-1, a cysteine peptidase inhibitor. A plasmid containing the CaneCPI-1 gene was constructed and yeast cells were transformed with the pYADE4_CaneCPI-1 construct. To evaluate the effect on fermentation ability, the transformed strain was used in the fermentation process with cell recycling. During the nine-hour fermentative cycles the transformed strain did not have its viability and fermentation ability affected. In the last cycle, when the fermentation lasted longer, the protein was expressed probably at the expense of ethanol once the sugars were exhausted. The recombinant protein was expressed in yeast cells, purified and submitted to assays of activity that demonstrated its functionality. Thus, the industrial PE-2 strain of S. cerevisiae can be used as a viable system for protein expression and to produce alcohol simultaneously. The findings of the present study demonstrate the possibility of producing recombinant proteins with biotechnological applications during the ethanol fermentation process.


Subject(s)
Cysteine Proteinase Inhibitors/biosynthesis , Ethanol/metabolism , Plant Proteins/biosynthesis , Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae/genetics , Saccharum/genetics , Cysteine Proteinase Inhibitors/genetics , Fermentation , Plant Proteins/genetics , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics
6.
Braz. j. microbiol ; 44(4): 1121-1131, Oct.-Dec. 2013. ilus, graf, tab
Article in English | LILACS | ID: lil-705292

ABSTRACT

Among the native yeasts found in alcoholic fermentation, rough colonies associated with pseudohyphal morphology belonging to the species Saccharomyces cerevisiae are very common and undesirable during the process. The aim of this work was to perform morphological and physiological characterisations of S. cerevisiae strains that exhibited rough and smooth colonies in an attempt to identify alternatives that could contribute to the management of rough colony yeasts in alcoholic fermentation. Characterisation tests for invasiveness in Agar medium, killer activity, flocculation and fermentative capacity were performed on 22 strains (11 rough and 11 smooth colonies). The effects of acid treatment at different pH values on the growth of two strains ("52" -rough and "PE-02" smooth) as well as batch fermentation tests with cell recycling and acid treatment of the cells were also evaluated. Invasiveness in YPD Agar medium occurred at low frequency; ten of eleven rough yeasts exhibited flocculation; none of the strains showed killer activity; and the rough strains presented lower and slower fermentative capacities compared to the smooth strains in a 48-h cycle in a batch system with sugar cane juice. The growth of the rough strain was severely affected by the acid treatment at pH values of 1.0 and 1.5; however, the growth of the smooth strain was not affected. The fermentative efficiency in mixed fermentation (smooth and rough strains in the same cell mass proportion) did not differ from the efficiency obtained with the smooth strain alone, most likely because the acid treatment was conducted at pH 1.5 in a batch cell-recycle test. A fermentative efficiency as low as 60% was observed with the rough colony alone.


Subject(s)
Alcohols/metabolism , Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae/metabolism , Carboxylic Acids/metabolism , Culture Media/chemistry , Fermentation , Hydrogen-Ion Concentration , Saccharomyces cerevisiae/drug effects
7.
Yeast ; 30(8): 295-305, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23658026

ABSTRACT

Dekkera bruxellensis is a multifaceted yeast present in the fermentative processes used for alcoholic beverage and fuel alcohol production - in the latter, normally regarded as a contaminant. We evaluated the fermentation and growth performance of a strain isolated from water in an alcohol-producing unit, in batch systems with/without cell recycling in pure and co-cultures with Saccharomyces cerevisiae. The ethanol resistance and aeration dependence for ethanol/acid production were verified. Ethanol had an effect on the growth of D. bruxellensis in that it lowered or inhibited growth depending on the concentration. Acid production was verified in agitated cultures either with glucose or sucrose, but more ethanol was produced with glucose in agitated cultures. Regardless of the batch system, low sugar consumption and alcohol production and expressive growth were found with D. bruxellensis. Despite a similar ethanol yield compared to S. cerevisiae in the batch system without cell recycling, ethanol productivity was approximately four times lower. However, with cell recycling, ethanol yield was almost half that of S. cerevisiae. At initial low cell counts of D. bruxellensis (10 and 1000 cells/ml) in co-cultures with S. cerevisiae, a decrease in fermentative efficiency and a substantial growth throughout the fermentative cycles were displayed by D. bruxellensis. Due to the peculiarity of cell repitching in Brazilian fermentation processes, D. bruxellensis is able to establish itself in the process, even when present in low numbers initially, substantially impairing bioethanol production due to the low ethanol productivity, in spite of comparable ethanol yields.


Subject(s)
Dekkera/growth & development , Dekkera/metabolism , Saccharomyces cerevisiae/metabolism , Batch Cell Culture Techniques , Coculture Techniques , Dekkera/cytology , Ethanol/metabolism , Fermentation , Glucose/metabolism , Industrial Microbiology , Saccharomyces cerevisiae/growth & development , Sucrose/metabolism
8.
World J Microbiol Biotechnol ; 29(9): 1661-76, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23536198

ABSTRACT

The alcoholic fermentation in Brazil displays some peculiarities because the yeast used is recycled in a non-aseptic process. After centrifugation, the cells are treated with acid to control the bacterial growth. However, it is difficult to manage the indigenous yeasts without affecting the main culture of Saccharomyces cerevisiae. This work evaluated how the cell treatment could be modified to combat contaminant yeasts based on the differential sensitivities to low pH and high concentrations of ethanol displayed by an industrial strain of S. cerevisiae and three strains of Dekkera bruxellensis, which are common contaminant yeasts in Brazilian fermentation processes. The tests were initially performed in rich medium with a low pH or a high concentration of ethanol to analyse the yeast growth profile. Then, the single and combined effects of low pH and ethanol concentration on the yeast cell viability were evaluated under non-proliferative conditions. The effects on the fermentation parameters were also verified. S. cerevisiae grew best when not subjected to the stresses, but this yeast and D. bruxellensis had similar growth kinetics when exposed to a low pH or increased ethanol concentrations. However, the combined treatments of low pH (2.0) and ethanol (11 or 13 %) resulted in a decrease of D. bruxellensis cell viability almost three times higher than of S. cerevisiae, which was only slightly affected by all cell treatments. The initial viability of the treated cells was restored within 8 h of growth in sugar cane juice, with the exception of the combined treatment for D. bruxellensis. The ethanol-based cell treatment, in despite of slowing the fermentation, could decrease and maintain D. bruxellensis population under control while S. cerevisiae was taking over the fermentation along six fermentative cycles. These results indicate that it may be possible to control the growth of D. bruxellensis without major effects on S. cerevisiae. The cells could be treated between the fermentation cycles by the parcelled addition of 13 % ethanol to the tanks in which the yeast cream is treated with sulphuric acid at pH 2.0.


Subject(s)
Dekkera/growth & development , Dekkera/metabolism , Ethanol/pharmacology , Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae/metabolism , Culture Media , Distillation , Ethanol/metabolism , Fermentation , Hydrogen-Ion Concentration , Industrial Microbiology , Microbial Viability , Saccharum/metabolism
9.
Braz J Microbiol ; 44(4): 1121-31, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24688501

ABSTRACT

Among the native yeasts found in alcoholic fermentation, rough colonies associated with pseudohyphal morphology belonging to the species Saccharomyces cerevisiae are very common and undesirable during the process. The aim of this work was to perform morphological and physiological characterisations of S. cerevisiae strains that exhibited rough and smooth colonies in an attempt to identify alternatives that could contribute to the management of rough colony yeasts in alcoholic fermentation. Characterisation tests for invasiveness in Agar medium, killer activity, flocculation and fermentative capacity were performed on 22 strains (11 rough and 11 smooth colonies). The effects of acid treatment at different pH values on the growth of two strains ("52"--rough and "PE-02"--smooth) as well as batch fermentation tests with cell recycling and acid treatment of the cells were also evaluated. Invasiveness in YPD Agar medium occurred at low frequency; ten of eleven rough yeasts exhibited flocculation; none of the strains showed killer activity; and the rough strains presented lower and slower fermentative capacities compared to the smooth strains in a 48-h cycle in a batch system with sugar cane juice. The growth of the rough strain was severely affected by the acid treatment at pH values of 1.0 and 1.5; however, the growth of the smooth strain was not affected. The fermentative efficiency in mixed fermentation (smooth and rough strains in the same cell mass proportion) did not differ from the efficiency obtained with the smooth strain alone, most likely because the acid treatment was conducted at pH 1.5 in a batch cell-recycle test. A fermentative efficiency as low as 60% was observed with the rough colony alone.


Subject(s)
Alcohols/metabolism , Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae/metabolism , Carboxylic Acids/metabolism , Culture Media/chemistry , Fermentation , Hydrogen-Ion Concentration , Saccharomyces cerevisiae/drug effects
10.
Antonie Van Leeuwenhoek ; 101(3): 529-39, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22041979

ABSTRACT

The yeast Dekkera bruxellensis plays an important role in industrial fermentation processes, either as a contaminant or as a fermenting yeast. In this study, an analysis has been conducted of the fermentation characteristics of several industrial D. bruxellensis strains collected from distilleries from the Southeast and Northeast of Brazil, compared with Saccharomyces cerevisiae. It was found that all the strains of D. bruxellensis showed a lower fermentative capacity as a result of inefficient sugar assimilation, especially sucrose, under anaerobiosis, which is called the Custer effect. In addition, most of the sugar consumed by D. bruxellensis seemed to be used for biomass production, as was observed by the increase of its cell population during the fermentation recycles. In mixed populations, the surplus of D. bruxellensis over S. cerevisiae population could not be attributed to organic acid production by the first yeast, as previously suggested. Moreover, both yeast species showed similar sensitivity to lactic and acetic acids and were equally resistant to ethanol, when added exogenously to the fermentation medium. Thus, the effects that lead to the employment of D. bruxellensis in an industrial process and its effects on the production of ethanol are multivariate. The difficulty of using this yeast for ethanol production is that it requires the elimination of the Custer effect to allow an increase in the assimilation of sugar under anaerobic conditions.


Subject(s)
Dekkera/physiology , Industrial Microbiology/methods , Mycology/methods , Saccharomyces cerevisiae/physiology , Acids/metabolism , Anaerobiosis , Biofuels , Biomass , Brazil , Carbohydrates , Coculture Techniques , Culture Media , Dekkera/isolation & purification , Ethanol/metabolism , Fermentation , Saccharum/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL