Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 24(13)2023 Jun 28.
Article in English | MEDLINE | ID: mdl-37445998

ABSTRACT

Functional nanomaterials have attracted attention by producing different structures in any field. These materials have several potential applications, including medicine, electronics, and energy, which provide many unique properties. These nanostructures can be synthesized using various methods, including self-assembly, which can be used for the same applications. This unique nanomaterial is increasingly being used for biological detection due to its unique optical, electrical, and mechanical properties, which provide sensitive and specific sensors for detecting biomolecules such as DNA, RNA, and proteins. This review highlights recent advances in the field and discusses the fabrication and characterization of the corresponding materials, which can be further applied in optical, magnetic, electronic, and sensor fields.


Subject(s)
Biosensing Techniques , Nanostructures , Biosensing Techniques/methods , Nanostructures/chemistry , Proteins , DNA , Electronics
2.
Curr Med Chem ; 29(37): 5895-5902, 2022.
Article in English | MEDLINE | ID: mdl-35674300

ABSTRACT

BACKGROUND: Prostate cancer cells have very high PCA3 messenger RNA levels, which turns them into one of the new biomarkers for prostate cancer prognosis and diagnosis. OBJECTIVE: Our goal here is to develop a new aptasensor to detect PCA3 release by the cancer cell. METHODS: DNA hairpin containing PCA3 aptamer was thiolated, conjugated to methylene blue (MB) redox probe, and immobilized on gold electrode through self-assembly to detect label-free cancer cells. RESULTS: Our data have evidenced stable and sensitive sensors presenting a wide linear detection range (0-150ng/mL). In addition, monitoring PCA3 released by different types of prostate cells can provide in-depth knowledge about prostate cancer dynamics; therefore, it is a powerful platform for earlier clinical diagnostic. The released PCA3 can vary depending on the type of adopted prostate cells. CONCLUSION: PCA3 release was monitored in a group of cells for 2 h; it showed significantly higher expression in both LNCaP and PC-3 cells. This strategy provides a unique and simple methodology to achieve more sensitive and specific PCA3 detection; thus, it emerged as a promising tool for early cost-effective diagnosis.


Subject(s)
Aptamers, Nucleotide , Prostatic Neoplasms , Antigens, Neoplasm , Biomarkers, Tumor/genetics , DNA , Gold , Humans , Male , Methylene Blue , Prostate , Prostatic Neoplasms/diagnosis , Prostatic Neoplasms/genetics , RNA, Messenger
3.
Materials (Basel) ; 13(7)2020 Apr 10.
Article in English | MEDLINE | ID: mdl-32290055

ABSTRACT

Generally, enzyme immobilization on nanoparticles leads to nano-conjugates presenting partially preserved, or even absent, biological properties. Notwithstanding, recent research demonstrated that the coupling to nanomaterials can improve the activity of immobilized enzymes. Herein, xanthine oxidase (XO) was immobilized by self-assembly on peculiar naked iron oxide nanoparticles (surface active maghemite nanoparticles, SAMNs). The catalytic activity of the nanostructured conjugate (SAMN@XO) was assessed by optical spectroscopy and compared to the parent enzyme. SAMN@XO revealed improved catalytic features with respect to the parent enzyme and was applied for the electrochemical studies of xanthine. The present example supports the nascent knowledge concerning protein conjugation to nanoparticle as a means for the modulation of biological activity.

4.
Materials (Basel) ; 13(5)2020 Feb 29.
Article in English | MEDLINE | ID: mdl-32121429

ABSTRACT

The aim of the current study is to introduce a methodology aimed at producing a biosensor that uses gold nanoparticles (AuNPs) to detect porcine circovirus 2 (PCV-2). This biosensor was based on AuNPs, which were modified with self-assembled monolayers (SAMs) and antibodies. The AuNPs' surface and virus modification process applied to enable antibody binding was accompanied by localized surface plasmon resonance (LSPR), surface plasmon resonance (SPR), transmission electron microscopy (TEM), and energy-dispersive X-ray spectroscopy (EDX). Virus quantification was possible by the light absorption difference in the spectrum at concentrations of 105, 106, 107, 108, and 109 DNA copies/mL PCV-2 in relation to quantitative PCR (qPCR), with an R2 value >0.98. The visualization of colorimetric changes in the different PCV-2 concentrations was possible without the use of equipment. The biosensor production methodology presented reproducibility and specificity, as well as easy synthesis and low cost. An enhanced version of it may be used in the future to replace traditional tests such as PCR.

5.
Materials (Basel) ; 13(2)2020 Jan 14.
Article in English | MEDLINE | ID: mdl-31947551

ABSTRACT

: The aim of the current study is to present a strategy to improve the efficiency of 5-fluorouracil (5-FU), which is widely used as antineoplastic agent against solid tumors-based on the use of gold nanocarriers to overcome the resistance of colorectal cancer cells. 5-FU was loaded on gold nanoparticles (AuNP) coated with anti-EGFR antibodies in order to target them towards colorectal cancer cells that overexpress epidermal growth factor receptors (EGFR). Physicochemical characterization has shown that AuNP size was approximately 20 nm and that AuNP functionalization led to spherical nanoparticles. Flow cytometry allowed observing that some compounds synthesized by our research group have induced apoptosis/necrosis and impaired the proliferation of colon cancer cell lines 'HCT-116' and 'HT-29'. The antibody/drug combination in AuNP (AuNP 5FU EGFR) has improved the apoptosis rate and impaired cell proliferation in both cell lines, regardless of the exposure time. Overall, these results have shown that AuNP functionalization with monoclonal antibodies focused on delivering 5-FU to tumor cells is an exciting strategy against colorectal cancer.

6.
Bioelectrochemistry ; 132: 107418, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31835109

ABSTRACT

A shell of nanostructured ferric tannates was spontaneously developed on the surface of naked maghemite nanoparticles (SAMNs, the core) by a simple wet reaction with tannic acid (TA). The as obtained core-shell nanomaterial (SAMN@TA) displays specific electrocatalytic and surface properties, which significantly differ from parent maghemite. Thanks to the known proclivity of TA to interact with proteins, SAMN@TA was proposed as a support for the direct immobilization of an enzyme. A ternary functional nanobioconjugate (SAMN@TA@TvL) was successfully self-assembled by incubating laccase from Trametes versicolor (TvL) and SAMN@TA. The SAMN@TA@TvL hybrid was kinetically characterized with respect to the native enzyme and applied for building an easy-to-use analytical device for the detection of polyphenols. The electrochemical biosensor allowed the determination of polyphenols by square wave voltammetry in mixed water-methanol solutions. The system sensitivity was 868.9 ±â€¯1.9nA µM-1, the LOD was 81 nM and the linearity range was comprised between 100 nM and 10 µM. The proposed approach was successfully applied to detect phenolics in blueberry extracts as real samples. Results suggest that SAMN@TA could be a promising, low cost and versatile tool for the creation of nano-bio-conjugates aimed at the development of new electrochemical sensing platforms.


Subject(s)
Electrochemical Techniques/methods , Ferric Compounds/chemistry , Laccase/chemistry , Nanostructures/chemistry , Phenols/analysis , Catalysis
7.
Talanta ; 197: 482-490, 2019 May 15.
Article in English | MEDLINE | ID: mdl-30771965

ABSTRACT

A new immunosensor using hybrid nanomaterials for the detection of dengue virus was demonstrated in this work. This immunosensor composed of nanoparticles of γ-Fe2O3(SAMN) modified with MPA- SAMN@MPA was characterized by FTIR spectroscopy, transmission electron microscopy,quartz crystal microbalance, UV-vis and LSPR technique. The binding of SAMN@MPA with AuNPs conjugated with aptamers(SAMN@MPA@AuNPs@aptamer) provides specific chemical bonds to four dengue serotypes. Colorimetric changes in the modification steps provided rapid visual detection of the virus without the use of equipment. Variations of aptamers concentrations 1.0-10.0 µM where the 3.0 µM aptamer concentration is sufficient to completely cover the surface of the modified AuNPs with an R2 value of> 0.99. This new proposed methodology presenting some advantages in relation to traditional detection methods such as time optimization and cost,can be used as a diagnostic method.


Subject(s)
Aptamers, Nucleotide/chemistry , Dengue Virus/isolation & purification , Ferrosoferric Oxide/chemistry , Immunoassay , Magnetite Nanoparticles/chemistry , Particle Size , Surface Properties
8.
Virology ; 513: 85-90, 2018 01 01.
Article in English | MEDLINE | ID: mdl-29035789

ABSTRACT

The aim of the present research is to propose a new method based on localized surface plasmon resonance (LSPR) for fast dengue virus detection. A pool with four dengue serotypes (DENV-1, -2, -3, -4) was detected through antigen-antibody binding using gold nanoparticles (AuNPs) as signaling antibody carriers. Such result was confirmed through surface plasmon resonance (SPR), transmission electron microcopy (TEM), and dynamic light scattering (DLS) techniques. The limit of detection was calculated for TCID50 107 demonstrating a linear correlation between viral concentration and number of cells with an r2 value of > 0.993. The assay presented good sensibility and reproducibility of results and the negative controls were not mistakenly detected. This design requires no pretreatment or high trained person. In the future, it can be used in commercial antibody detection kits.


Subject(s)
Antibodies, Viral/metabolism , Biosensing Techniques/methods , Dengue Virus/isolation & purification , Dengue/diagnosis , Diagnostic Tests, Routine/methods , Metal Nanoparticles , Reproducibility of Results , Sensitivity and Specificity , Surface Plasmon Resonance
9.
Food Chem ; 221: 1792-1796, 2017 Apr 15.
Article in English | MEDLINE | ID: mdl-27979163

ABSTRACT

The presence of Gram-positive bacteria in foodstuffs is a chronic worldwide problem. Here, we present a cheap and simple colorimetric method for the detection of Lactobacillus species (spp.) and Staphylococcus aureus (S. aureus) using gold nanoparticles (AuNP) modified with monoclonal anti-Gram-positive bacteria to produce an immune-sensor. Detection is based on the fact that antibody-conjugated AuNPs can readily identify Gram-positive bacteria through antibody-antigen recognition, which results in a color change of AuNPs upon aggregation. The detection limit was 105CFU/ml in pure culture for Lactobacillus spp. and 120CFU/ml in pure culture for S. aureus. The method was applied successfully for detection of bacteria in samples of sugar cane, and agreed well with values obtained using other methods. These results suggested that the detection system could be used for the quantitative analysis of Gram-positive bacteria and might be applied potentially by the food industry.


Subject(s)
Biosensing Techniques/methods , Gold , Lactobacillus/isolation & purification , Metal Nanoparticles , Staphylococcus aureus/isolation & purification , Colorimetry/methods , Limit of Detection
SELECTION OF CITATIONS
SEARCH DETAIL