Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Immunol ; 9: 1675, 2018.
Article in English | MEDLINE | ID: mdl-30083156

ABSTRACT

Pseudomonas aeruginosa (P.a) is a pathogen causing significant morbidity and mortality, in particular, in hospital patients undergoing ventilation and in patients with cystic fibrosis. Among the virulence factors secreted or injected into host cells, the physiopathological relevance of type II secretions system (T2SS) is less studied. Although there is extensive literature on the destructive role of LasB in vitro on secreted innate immune components and on some stromal cell receptors, studies on its direct action on myeloid cells are scant. Using a variety of methods, including the use of bacterial mutants, gene-targeted mice, and proteomics technology, we show here, using non-opsonic conditions (thus mimicking resting and naïve conditions in the alveolar space), that LasB, an important component of the P.a T2SS is highly virulent in vivo, and can subvert alveolar macrophage (AM) activity and bacterial killing, in vitro and in vivo by downregulating important secreted innate immune molecules (complement factors, cytokines, etc.) and receptors (IFNAR, Csf1r, etc.). In particular, we show that LasB downregulates the production of C3 and factor B complement molecules, as well as the activation of reactive oxygen species production by AM. In addition, we showed that purified LasB impaired significantly the ability of AM to clear an unrelated bacterium, namely Streptococcus pneumoniae. These data provide a new mechanism of action for LasB, potentially partly explaining the early onset of P.a, alone, or with other bacteria, within the alveolar lumen in susceptible individuals, such as ventilated, chronic obstructive pulmonary disease and cystic fibrosis patients.

2.
Thorax ; 73(1): 49-61, 2018 01.
Article in English | MEDLINE | ID: mdl-28790180

ABSTRACT

BACKGROUND: Pseudomonas aeruginosa lung infections are a huge problem in ventilator-associated pneumonia, cystic fibrosis (CF) and in chronic obstructive pulmonary disease (COPD) exacerbations. This bacterium secretes virulence factors that may subvert host innate immunity. OBJECTIVE: We evaluated the effect of P. aeruginosa elastase LasB, an important virulence factor secreted by the type II secretion system, on ion transport, innate immune responses and epithelial repair, both in vitro and in vivo. METHODS: Wild-type (WT) or cystic fibrosis transmembrane conductance regulator (CFTR)-mutated epithelial cells (cell lines and primary cells from patients) were treated with WT or ΔLasB pseudomonas aeruginosa O1 (PAO1) secretomes. The effect of LasB and PAO1 infection was also assessed in vivo in murine models. RESULTS: We showed that LasB was the most abundant protein in WT PAO1 secretomes and that it decreased epithelial CFTR expression and activity. In airway epithelial cell lines and primary bronchial epithelial cells, LasB degraded the immune mediators interleukin (IL)-6 and trappin-2, an important epithelial-derived antimicrobial molecule. We further showed that an IL-6/STAT3 signalling pathway was downregulated by LasB, resulting in inhibition of epithelial cell repair. In mice, intranasally instillated LasB induced significant weight loss, inflammation, injury and death. By contrast, we showed that overexpression of IL-6 and trappin-2 protected mice against WT-PAO1-induced death, by upregulating IL-17/IL-22 antimicrobial and repair pathways. CONCLUSIONS: Our data demonstrate that PAO1 LasB is a major P. aeruginosa secreted factor that modulates ion transport, immune response and tissue repair. Targeting this virulence factor or upregulating protective factors such as IL-6 or antimicrobial molecules such as trappin-2 could be beneficial in P. aeruginosa-infected individuals.


Subject(s)
Bacterial Proteins , Cystic Fibrosis Transmembrane Conductance Regulator/physiology , Cystic Fibrosis/immunology , Epithelial Cells/physiology , Immunity, Innate/physiology , Interleukin-6/physiology , Metalloendopeptidases , Animals , Humans , Mice , Mice, Inbred C57BL , Mice, Transgenic
3.
Sci Rep ; 7: 42243, 2017 02 09.
Article in English | MEDLINE | ID: mdl-28181563

ABSTRACT

According to the WHO, and despite reduction in mortality rates, there were an estimated 438 000 malaria deaths in 2015. Therefore new antimalarials capable of limiting organ damage are still required. We show that systemic and lung adenovirus (Ad)-mediated over-expression of trappin-2 (T-2) an antibacterial molecule with anti-inflammatory activity, increased mice survival following infection with the cerebral malaria-inducing Plasmodium berghei ANKA (PbANKA) strain. Systemically, T-2 reduced PbANKA sequestration in spleen, lung, liver and brain, associated with a decrease in pro-inflammatory cytokines (eg TNF-α in spleen and lung) and an increase in IL-10 production in the lung. Similarly, local lung instillation of Ad-T-2 resulted in a reduced organ parasite sequestration and a shift towards an anti-inflammatory/repair response, potentially implicating monocytes in the protective phenotype. Relatedly, we demonstrated in vitro that human monocytes incubated with Plasmodium falciparum-infected red blood cells (Pf-iRBCs) and IgGs from hyper-immune African human sera produced T-2 and that the latter colocalized with merozoites and inhibited Pf multiplication. This array of data argues for the first time for the potential therapeutic usefulness of this host defense peptide in human malaria patients, with the aim to limit acute lung injury and respiratory distress syndrom often observed during malaria episodes.


Subject(s)
Anti-Infective Agents/therapeutic use , Antiparasitic Agents/therapeutic use , Elafin/therapeutic use , Malaria, Cerebral/drug therapy , Malaria, Cerebral/parasitology , Plasmodium berghei/drug effects , Administration, Intranasal , Animals , Anti-Infective Agents/pharmacology , Antiparasitic Agents/pharmacology , Cytokines/genetics , Cytokines/metabolism , Disease Models, Animal , Elafin/pharmacology , Erythrocytes/parasitology , Female , Humans , Malaria, Cerebral/blood , Merozoites/metabolism , Mice, Inbred C57BL , Monocytes/metabolism , Parasitemia/drug therapy , Parasitemia/parasitology , Parasitemia/pathology , Plasmodium falciparum/growth & development , RNA, Messenger/genetics , RNA, Messenger/metabolism , STAT3 Transcription Factor/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL