Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Access Microbiol ; 5(7)2023.
Article in English | MEDLINE | ID: mdl-37601437

ABSTRACT

Despite seminal advances towards understanding the infection mechanism of SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2), it continues to cause significant morbidity and mortality worldwide. Though mass immunization programmes have been implemented in several countries, the viral transmission cycle has shown a continuous progression in the form of multiple waves. A constant change in the frequencies of dominant viral lineages, arising from the accumulation of nucleotide variations (NVs) through favourable selection, is understandably expected to be a major determinant of disease severity and possible vaccine escape. Indeed, worldwide efforts have been initiated to identify specific virus lineage(s) and/or NVs that may cause a severe clinical presentation or facilitate vaccination breakthrough. Since host genetics is expected to play a major role in shaping virus evolution, it is imperative to study the role of genome-wide SARS-CoV-2 NVs across various populations. In the current study, we analysed the whole genome sequence of 3543 SARS-CoV-2-infected samples obtained from the state of Telangana, India (including 210 from our previous study), collected over an extended period from April 2020 to October 2021. We present a unique perspective on the evolution of prevalent virus lineages and NVs during this period. We also highlight the presence of specific NVs likely to be associated favourably with samples classified as vaccination breakthroughs. Finally, we report genome-wide intra-host variations at novel genomic positions. The results presented here provide critical insights into virus evolution over an extended period and pave the way to rigorously investigate the role of specific NVs in vaccination breakthroughs.

2.
PLoS Biol ; 20(5): e3001634, 2022 05.
Article in English | MEDLINE | ID: mdl-35584084

ABSTRACT

Therapeutic methods to modulate skin pigmentation has important implications for skin cancer prevention and for treating cutaneous hyperpigmentary conditions. Towards defining new potential targets, we followed temporal dynamics of melanogenesis using a cell-autonomous pigmentation model. Our study elucidates 3 dominant phases of synchronized metabolic and transcriptional reprogramming. The melanogenic trigger is associated with high MITF levels along with rapid uptake of glucose. The transition to pigmented state is accompanied by increased glucose channelisation to anabolic pathways that support melanosome biogenesis. SREBF1-mediated up-regulation of fatty acid synthesis results in a transient accumulation of lipid droplets and enhancement of fatty acids oxidation through mitochondrial respiration. While this heightened bioenergetic activity is important to sustain melanogenesis, it impairs mitochondria lately, shifting the metabolism towards glycolysis. This recovery phase is accompanied by activation of the NRF2 detoxication pathway. Finally, we show that inhibitors of lipid metabolism can resolve hyperpigmentary conditions in a guinea pig UV-tanning model. Our study reveals rewiring of the metabolic circuit during melanogenesis, and fatty acid metabolism as a potential therapeutic target in a variety of cutaneous diseases manifesting hyperpigmentary phenotype.


Subject(s)
Lipid Metabolism , Melanins , Skin Pigmentation , Animals , Fatty Acids , Glucose , Guinea Pigs , Melanins/metabolism
3.
Cells ; 11(4)2022 02 16.
Article in English | MEDLINE | ID: mdl-35203350

ABSTRACT

Inter-organellar communication is emerging as one of the most crucial regulators of cellular physiology. One of the key regulators of inter-organellar communication is Mitofusin-2 (MFN2). MFN2 is also involved in mediating mitochondrial fusion-fission dynamics. Further, it facilitates mitochondrial crosstalk with the endoplasmic reticulum, lysosomes and melanosomes, which are lysosome-related organelles specialized in melanin synthesis within melanocytes. However, the role of MFN2 in regulating melanocyte-specific cellular function, i.e., melanogenesis, remains poorly understood. Here, using a B16 mouse melanoma cell line and primary human melanocytes, we report that MFN2 negatively regulates melanogenesis. Both the transient and stable knockdown of MFN2 leads to enhanced melanogenesis, which is associated with an increase in the number of mature (stage III and IV) melanosomes and the augmented expression of key melanogenic enzymes. Further, the ectopic expression of MFN2 in MFN2-silenced cells leads to the complete rescue of the phenotype at the cellular and molecular levels. Mechanistically, MFN2-silencing elevates mitochondrial reactive-oxygen-species (ROS) levels which in turn increases melanogenesis. ROS quenching with the antioxidant N-acetyl cysteine (NAC) reverses the MFN2-knockdown-mediated increase in melanogenesis. Moreover, MFN2 expression is significantly lower in the darkly pigmented primary human melanocytes in comparison to lightly pigmented melanocytes, highlighting a potential contribution of lower MFN2 levels to higher physiological pigmentation. Taken together, our work establishes MFN2 as a novel negative regulator of melanogenesis.


Subject(s)
Melanoma, Experimental , Melanosomes , Animals , Melanins/metabolism , Melanocytes/metabolism , Melanoma, Experimental/metabolism , Melanosomes/metabolism , Mice , Mitochondria/metabolism , Reactive Oxygen Species/metabolism
4.
PLoS One ; 9(9): e107425, 2014.
Article in English | MEDLINE | ID: mdl-25226542

ABSTRACT

Using amino-labeled oligonucleotide probes, we established a simple, robust and low-noise method for simultaneous detection of RNA and DNA by fluorescence in situ hybridization, a highly useful tool to study the large pool of long non-coding RNAs being identified in the current research. With probes either chemically or biologically synthesized, we demonstrate that the method can be applied to study a wide range of RNA and DNA targets at the single-cell and single-molecule level in cellular contexts.


Subject(s)
DNA , In Situ Hybridization, Fluorescence/methods , Oligonucleotide Probes , RNA , Animals , Cell Line , DNA/genetics , Female , Humans , Mice , Oligonucleotide Probes/chemical synthesis , Oligonucleotide Probes/chemistry , RNA/genetics , Telomere/genetics
5.
Genesis ; 49(11): 821-34, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21898762

ABSTRACT

Each mammalian female cell transcriptionally inactivates one X chromosome to balance X-linked gene dosage between males and females. This phenomenon, called X chromosome inactivation, is a perfect epigenetic event, in which two chromosomes with identical DNA sequences are solely distinguished by epigenetic modifications. In this case, epigenetic marks, such as histone modifications, histone variants, DNA methylation, and ncRNAs, are all enriched on one chromosome, the inactive X chromosome (Xi), to establish its chromosome-wide gene silencing. At face value, it seems that the gene silencing mechanism of Xi is well understood. However, the "silence" of Xi in somatic cells is so tightly maintained that it remains largely intact even after almost all known epigenetic modifications are artificially depleted. To understand how the gene silence of Xi is maintained in soma is a major challenge in current research. We summarize the current knowledge related with this issue and discuss future research directions.


Subject(s)
Gene Silencing , Histones/metabolism , X Chromosome Inactivation , X Chromosome/metabolism , Acetylation , Animals , DNA Methylation , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Euchromatin/genetics , Euchromatin/metabolism , Female , Heterochromatin/genetics , Heterochromatin/metabolism , Histones/genetics , Male , Mammals , Poly(ADP-ribose) Polymerases/genetics , Poly(ADP-ribose) Polymerases/metabolism , RNA, Untranslated/genetics , RNA, Untranslated/metabolism , X Chromosome/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...