Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
1.
Cancer Immunol Res ; 2024 May 20.
Article in English | MEDLINE | ID: mdl-38768394

ABSTRACT

Immune checkpoint therapies (ICTs) can induce life-threatening immune-related adverse events, including myocarditis and myositis, which are rare but often concurrent. The molecular pathways and immune subsets underlying these toxicities remain poorly understood. To address this need, we obtained heart and skeletal muscle biopsies for single-cell RNA sequencing in living patients with cancers treated with ICTs admitted to the hospital with myocarditis and/or myositis (overlapping myocarditis plus myositis, n=10; myocarditis-only, n=1) compared to ICT-exposed patients ruled out for toxicity utilized as controls (n=9) within 96 hours of clinical presentation. Analyses of 58,523 cells revealed CD8+ T cells with a cytotoxic phenotype expressing activation/exhaustion markers in both myocarditis and myositis. Furthermore, the analyses identified a population of myeloid cells expressing tissue-resident signatures and FcγRIIIa (CD16a), which is known to bind IgG and regulate complement activation. Immunohistochemistry of affected cardiac and skeletal muscle tissues revealed protein expression of pan-IgG and complement product C4d that were associated with the presence of high-titer serum autoantibodies against muscle antigens in a subset of patients. We further identified a population of inflammatory IL-1B+TNF+ myeloid cells specifically enriched in myocarditis and associated with greater toxicity severity and poorer clinical outcomes. These results are the first to recognize these myeloid subsets in human immune-related myocarditis and myositis tissues and nominate new targets for investigation into rational treatments to overcome these high-mortality toxicities.

2.
Oncotarget ; 15: 238-247, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38502947

ABSTRACT

A clinical trial was conducted to assess the feasibility of enrolling patients with Stage II or III hormone receptor positive (HR+)/HER2-negative breast cancer to pre-operative dual PD-L1/CTLA-4 checkpoint inhibition administered prior to neoadjuvant chemotherapy (NACT). Eight eligible patients were treated with upfront durvalumab and tremelimumab for two cycles. Patients then received NACT prior to breast surgery. Seven patients had baseline and interval breast ultrasounds after combination immunotherapy and the responses were mixed: 3/7 patients experienced a ≥30% decrease in tumor volume, 3/7 a ≥30% increase, and 1 patient had stable disease. At the time of breast surgery, 1/8 patients had a pathologic complete response (pCR). The trial was stopped early after 3 of 8 patients experienced immunotherapy-related toxicity or suspected disease progression that prompted discontinuation or a delay in the administration of NACT. Two patients experienced grade 3 immune-related adverse events (1 with colitis, 1 with endocrinopathy). Analysis of the tumor microenvironment after combination immunotherapy did not show a significant change in immune cell subsets from baseline. There was limited benefit for dual checkpoint blockade administered prior to NACT in our study of 8 patients with HR+/HER2-negative breast cancer.


Subject(s)
Antibodies, Monoclonal, Humanized , Antibodies, Monoclonal , Breast Neoplasms , Humans , Female , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Treatment Outcome , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Neoadjuvant Therapy/adverse effects , Tumor Microenvironment
3.
Nat Cancer ; 4(10): 1455-1473, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37653141

ABSTRACT

Glioblastoma (GBM) tumors are enriched in immune-suppressive myeloid cells and are refractory to immune checkpoint therapy (ICT). Targeting epigenetic pathways to reprogram the functional phenotype of immune-suppressive myeloid cells to overcome resistance to ICT remains unexplored. Single-cell and spatial transcriptomic analyses of human GBM tumors demonstrated high expression of an epigenetic enzyme-histone 3 lysine 27 demethylase (KDM6B)-in intratumoral immune-suppressive myeloid cell subsets. Importantly, myeloid cell-specific Kdm6b deletion enhanced proinflammatory pathways and improved survival in GBM tumor-bearing mice. Mechanistic studies showed that the absence of Kdm6b enhances antigen presentation, interferon response and phagocytosis in myeloid cells by inhibition of mediators of immune suppression including Mafb, Socs3 and Sirpa. Further, pharmacological inhibition of KDM6B mirrored the functional phenotype of Kdm6b-deleted myeloid cells and enhanced anti-PD1 efficacy. This study thus identified KDM6B as an epigenetic regulator of the functional phenotype of myeloid cell subsets and a potential therapeutic target for enhanced response to ICT.


Subject(s)
Glioblastoma , Humans , Mice , Animals , Glioblastoma/drug therapy , Glioblastoma/genetics , Histone Demethylases/genetics , Gene Expression Profiling , Phenotype , Jumonji Domain-Containing Histone Demethylases/genetics
4.
Res Sq ; 2023 Jul 18.
Article in English | MEDLINE | ID: mdl-37503252

ABSTRACT

While the nervous system has reciprocal interactions with both cancer and the immune system, little is known about the potential role of tumor associated nerves (TANs) in modulating anti-tumoral immunity. Moreover, while peri-neural invasion is a well establish poor prognostic factor across cancer types, the mechanisms driving this clinical effect remain unknown. Here, we provide clinical and mechniastic association between TANs damage and resistance to anti-PD-1 therapy. Using electron microscopy, electrical conduction studies, and tumor samples of cutaneous squamous cell carcinoma (cSCC) patients, we showed that cancer cells can destroy myelin sheath and induce TANs degeneration. Multi-omics and spatial analyses of tumor samples from cSCC patients who underwent neoadjuvant anti-PD-1 therapy demonstrated that anti-PD-1 non-responders had higher rates of peri-neural invasion, TANs damage and degeneration compared to responders, both at baseline and following neoadjuvant treatment. Tumors from non-responders were also characterized by a sustained signaling of interferon type I (IFN-I) - known to both propagate nerve degeneration and to dampen anti-tumoral immunity. Peri-neural niches of non-responders were characterized by higher immune activity compared to responders, including immune-suppressive activity of M2 macrophages, and T regulatory cells. This tumor promoting inflammation expanded to the rest of the tumor microenvironment in non-responders. Anti-PD-1 efficacy was dampened by inducing nerve damage prior to treatment administration in a murine model. In contrast, anti-PD-1 efficacy was enhanced by denervation and by interleukin-6 blockade. These findings suggested a potential novel anti-PD-1 resistance drived by TANs damage and inflammation. This resistance mechanism is targetable and may have therapeutic implications in other neurotropic cancers with poor response to anti-PD-1 therapy such as pancreatic, prostate, and breast cancers.

5.
Nat Med ; 29(3): 593-604, 2023 03.
Article in English | MEDLINE | ID: mdl-36928818

ABSTRACT

Neoadjuvant ipilimumab + nivolumab (Ipi+Nivo) and nivolumab + chemotherapy (Nivo+CT) induce greater pathologic response rates than CT alone in patients with operable non-small cell lung cancer (NSCLC). The impact of adding ipilimumab to neoadjuvant Nivo+CT is unknown. Here we report the results and correlates of two arms of the phase 2 platform NEOSTAR trial testing neoadjuvant Nivo+CT and Ipi+Nivo+CT with major pathologic response (MPR) as the primary endpoint. MPR rates were 32.1% (7/22, 80% confidence interval (CI) 18.7-43.1%) in the Nivo+CT arm and 50% (11/22, 80% CI 34.6-61.1%) in the Ipi+Nivo+CT arm; the primary endpoint was met in both arms. In patients without known tumor EGFR/ALK alterations, MPR rates were 41.2% (7/17) and 62.5% (10/16) in the Nivo+CT and Ipi+Nivo+CT groups, respectively. No new safety signals were observed in either arm. Single-cell sequencing and multi-platform immune profiling (exploratory endpoints) underscored immune cell populations and phenotypes, including effector memory CD8+ T, B and myeloid cells and markers of tertiary lymphoid structures, that were preferentially increased in the Ipi+Nivo+CT cohort. Baseline fecal microbiota in patients with MPR were enriched with beneficial taxa, such as Akkermansia, and displayed reduced abundance of pro-inflammatory and pathogenic microbes. Neoadjuvant Ipi+Nivo+CT enhances pathologic responses and warrants further study in operable NSCLC. (ClinicalTrials.gov registration: NCT03158129 .).


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Melanoma , Humans , Nivolumab/therapeutic use , Ipilimumab/therapeutic use , Carcinoma, Non-Small-Cell Lung/drug therapy , Neoadjuvant Therapy , Melanoma/pathology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Lung Neoplasms/drug therapy
6.
J Immunother Cancer ; 11(3)2023 03.
Article in English | MEDLINE | ID: mdl-36948506

ABSTRACT

BACKGROUND: The prostate tumor microenvironment (TME) is immunosuppressive, with few effector T cells and enrichment of inhibitory immune populations, leading to limited responses to treatments such as immune checkpoint therapies (ICTs). The immune composition of the prostate TME differs across soft tissue and bone, the most common site of treatment-refractory metastasis. Understanding immunosuppressive mechanisms specific to prostate TMEs will enable rational immunotherapy strategies to generate effective antitumor immune responses. Daratumumab (anti-CD38 antibody) and edicotinib (colony-stimulating factor-1 receptor (CSF-1R) inhibitor) may alter the balance within the prostate TME to promote antitumor immune responses. HYPOTHESIS: Daratumumab or edicotinib will be safe and will alter the immune TME, leading to antitumor responses in localized prostate cancer. PATIENTS AND METHODS: In this presurgical study, patients with localized prostate cancer received 4 weekly doses of daratumumab or 4 weeks of daily edicotinib prior to radical prostatectomy (RP). Treated and untreated control (Gleason score ≥8 in prostate biopsy) prostatectomy specimens and patient-matched pre- and post-treatment peripheral blood mononuclear cells (PBMCs) and bone marrow samples were evaluated. The primary endpoint was incidence of adverse events (AEs). The secondary endpoint was pathologic complete remission (pCR) rate. RESULTS: Twenty-five patients were treated (daratumumab, n=15; edicotinib, n=10). All patients underwent RP without delays. Grade 3 treatment-related AEs with daratumumab occurred in 3 patients (12%), and no ≥grade 3 treatment-related AEs occurred with edicotinib. No changes in serum prostate-specific antigen (PSA) levels or pCRs were observed. Daratumumab led to a decreased frequency of CD38+ T cells, natural killer cells, and myeloid cells in prostate tumors, bone marrow, and PBMCs. There were no consistent changes in CSF-1R+ immune cells in prostate, bone marrow, or PBMCs with edicotinib. Neither treatment induced T cell infiltration into the prostate TME. CONCLUSIONS: Daratumumab and edicotinib treatment was safe and well-tolerated in patients with localized prostate cancer but did not induce pCRs. Decreases in CD38+ immune cells were observed in prostate tumors, bone marrow, and PBMCs with daratumumab, but changes in CSF-1R+ immune cells were not consistently observed with edicotinib. Neither myeloid-targeted agent alone was sufficient to generate antitumor responses in prostate cancer; thus, combinations with agents to induce T cell infiltration (eg, ICTs) will be needed to overcome the immunosuppressive prostate TME.


Subject(s)
Antineoplastic Agents , Prostatic Neoplasms , Male , Humans , Leukocytes, Mononuclear/pathology , Antineoplastic Agents/therapeutic use , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/therapeutic use , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/pathology , Immunosuppressive Agents , Tumor Microenvironment
7.
Blood Adv ; 7(10): 1958-1966, 2023 05 23.
Article in English | MEDLINE | ID: mdl-36287248

ABSTRACT

Richter transformation (RT) is a rare complication of chronic lymphocytic leukemia (CLL) that has dismal outcomes. Upregulation of PD-1/PD-L1 drives immunological evasion in patients with RT. We hypothesized that combining nivolumab, a PD-1 blocking antibody, with the BTK inhibitor (BTKi) ibrutinib could potentiate tumor-cell killing. We conducted an investigator-initiated phase 2 clinical trial to assess the efficacy of combined nivolumab and ibrutinib in patients with diffuse large B-cell lymphoma (DLBCL) RT and CLL. Patients included were ≥18 years of age with adequate hepatic and renal function. Patients received nivolumab every 2 weeks of a 4-week cycle for a maximum of 24 cycles. A standard dose ibrutinib was initiated from cycle 2 onward and continued daily until progression. For patients who were already on ibrutinib at the time of study entry, the same was continued while nivolumab was initiated. A total of 24 patients with RT with a median age of 64.5 years (range, 47-88) were enrolled. Ten patients (42%) had received prior treatment for RT and 13 patients (54%) had received a prior BTKi. A total of 10 patients (42%) responded with a median duration of response of 15 months. The median overall survival was 13 months. Four of 24 (17%) patients had checkpoint inhibition-related immunological toxicities. In the CLL cohort, 10 patients were enrolled, of whom 3 patients converted from partial to complete remission; 1 patient had a grade 2 immunological toxicity. Combined nivolumab and ibrutinib is an active regimen for patients with DLBCL RT with an overall response rate of 42%. Given the limited treatment options for patients with RT, checkpoint inhibition provides a potential therapeutic option. This trial is registered at www.clinicaltrials.gov as #NCT02420912.


Subject(s)
Leukemia, Lymphocytic, Chronic, B-Cell , Lymphoma, Large B-Cell, Diffuse , Humans , Middle Aged , Aged , Aged, 80 and over , Nivolumab/therapeutic use , Programmed Cell Death 1 Receptor , B-Lymphocytes/pathology , Lymphoma, Large B-Cell, Diffuse/drug therapy , Lymphoma, Large B-Cell, Diffuse/pathology
8.
medRxiv ; 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-38234840

ABSTRACT

Glioblastoma (GBM) is a primary brain cancer with an abysmal prognosis and few effective therapies. The ability to investigate the tumor microenvironment before and during treatment would greatly enhance both understanding of disease response and progression, as well as the delivery and impact of therapeutics. Stereotactic biopsies are a routine surgical procedure performed primarily for diagnostic histopathologic purposes. The role of investigative biopsies - tissue sampling for the purpose of understanding tumor microenvironmental responses to treatment using integrated multi-modal molecular analyses ('Multi-omics") has yet to be defined. Secondly, it is unknown whether comparatively small tissue samples from brain biopsies can yield sufficient information with such methods. Here we adapt stereotactic needle core biopsy tissue in two separate patients. In the first patient with recurrent GBM we performed highly resolved multi-omics analysis methods including single cell RNA sequencing, spatial-transcriptomics, metabolomics, proteomics, phosphoproteomics, T-cell clonotype analysis, and MHC Class I immunopeptidomics from biopsy tissue that was obtained from a single procedure. In a second patient we analyzed multi-regional core biopsies to decipher spatial and genomic variance. We also investigated the utility of stereotactic biopsies as a method for generating patient derived xenograft models in a separate patient cohort. Dataset integration across modalities showed good correspondence between spatial modalities, highlighted immune cell associated metabolic pathways and revealed poor correlation between RNA expression and the tumor MHC Class I immunopeptidome. In conclusion, stereotactic needle biopsy cores are of sufficient quality to generate multi-omics data, provide data rich insight into a patient's disease process and tumor immune microenvironment and can be of value in evaluating treatment responses. One sentence summary: Integrative multi-omics analysis of stereotactic needle core biopsies in glioblastoma.

9.
Sci Transl Med ; 14(641): eabm6420, 2022 04 20.
Article in English | MEDLINE | ID: mdl-35442707

ABSTRACT

The accumulation of immune-suppressive myeloid cells is a critical determinant of resistance to anti-programmed death-1 (PD-1) therapy in advanced clear cell renal cell carcinoma (ccRCC). In preclinical models, the tyrosine kinase inhibitor sitravatinib enhanced responses to anti-PD-1 therapy by modulating immune-suppressive myeloid cells. We conducted a phase 1-2 trial to choose an optimal sitravatinib dose combined with a fixed dose of nivolumab in 42 immunotherapy-naïve patients with ccRCC refractory to prior antiangiogenic therapies. The combination demonstrated no unexpected toxicities and achieved an objective response rate of 35.7% and a median progression-free survival of 11.7 months, with 80.1% of patients alive after a median follow-up of 18.7 months. Baseline peripheral blood neutrophil-to-lymphocyte ratio correlated with response to sitravatinib and nivolumab. Patients with liver metastases showed durable responses comparable to patients without liver metastases. In addition, correlative studies demonstrated reduction of immune-suppressive myeloid cells in the periphery and tumor microenvironment following sitravatinib treatment. This study provides a rationally designed combinatorial strategy to improve outcomes of anti-PD-1 therapy in advanced ccRCC.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Liver Neoplasms , Angiogenesis Inhibitors/therapeutic use , Anilides , Carcinoma, Renal Cell/drug therapy , Carcinoma, Renal Cell/pathology , Female , Humans , Kidney Neoplasms/drug therapy , Kidney Neoplasms/pathology , Liver Neoplasms/drug therapy , Male , Nivolumab/therapeutic use , Pyridines , Tumor Microenvironment
11.
Cancer Cell ; 40(3): 249-251, 2022 03 14.
Article in English | MEDLINE | ID: mdl-35290784

ABSTRACT

Finding biomarkers for predicting anti-tumor responses and immune-related adverse events (irAEs) with immune checkpoint therapy remains a challenge. Lozano et al. have developed a composite biomarker score that includes the frequency of effector-memory CD4 T cells and TCR clonality of CD4 T cells in peripheral blood as a potentially predictive biomarker of irAEs.


Subject(s)
Neoplasms , Biomarkers , CD4-Positive T-Lymphocytes , Humans
12.
Lancet Gastroenterol Hepatol ; 7(3): 208-218, 2022 03.
Article in English | MEDLINE | ID: mdl-35065057

ABSTRACT

BACKGROUND: Hepatocellular carcinoma has high recurrence rates after surgery; however, there are no approved standard-of-care neoadjuvant or adjuvant therapies. Immunotherapy has been shown to improve survival in advanced hepatocellular carcinoma; we therefore aimed to evaluate the safety and tolerability of perioperative immunotherapy in resectable hepatocellular carcinoma. METHODS: In this single-centre, randomised, open-label, phase 2 trial, patients with resectable hepatocellular carcinoma were randomly assigned (1:1) to receive 240 mg of nivolumab intravenously every 2 weeks (for up to three doses before surgery at 6 weeks) followed in the adjuvant phase by 480 mg of nivolumab intravenously every 4 weeks for 2 years, or 240 mg of nivolumab intravenously every 2 weeks (for up to three doses before surgery) plus one dose of 1 mg/kg of ipilimumab intravenously concurrently with the first preoperative dose of nivolumab, followed in the adjuvant phase by 480 mg of nivolumab intravenously every 4 weeks for up to 2 years plus 1 mg/kg of ipilimumab intravenously every 6 weeks for up to four cycles. Patients were randomly assigned to the treatment groups by use of block randomisation with a random block size. The primary endpoint was the safety and tolerability of nivolumab with or without ipilimumab. Secondary endpoints were the proportion of patients with an overall response, time to progression, and progression-free survival. This trial is registered with ClinicalTrials.gov (NCT03222076) and is completed. FINDINGS: Between Oct 30, 2017, and Dec 3, 2019, 30 patients were enrolled and 27 were randomly assigned: 13 to nivolumab and 14 to nivolumab plus ipilimumab. Grade 3-4 adverse events were higher with nivolumab plus ipilimumab (six [43%] of 14 patients) than with nivolumab alone (three [23%] of 13). The most common treatment-related adverse events of any grade were increased alanine aminotransferase (three [23%] of 13 patients on nivolumab vs seven [50%] of 14 patients on nivolumab plus ipilimumab) and increased aspartate aminotransferase (three [23%] vs seven [50%]). No patients in either group had their surgery delayed due to grade 3 or worse adverse events. Seven of 27 patients had surgical cancellations, but none was due to treatment-related adverse events. Estimated median progression-free survival was 9·4 months (95% CI 1·47-not estimable [NE]) with nivolumab and 19·53 months (2·33-NE) with nivolumab plus ipilimumab (hazard ratio [HR] 0·99, 95% CI 0·31-2·54); median time to progression was 9·4 months (95% CI 1·47-NE) in the nivolumab group and 19·53 months (2·33-NE) in the nivolumab plus ipilimumab group (HR 0·89, 95% CI 0·31-2·54). In an exploratory analysis, three (23%) of 13 patients had an overall response with nivolumab monotherapy, versus none with nivolumab plus ipilimumab. Three (33%) of nine patients had a major pathological response (ie, ≥70% necrosis in the resected tumour area) with nivolumab monotherapy compared with three (27%) of 11 with nivolumab plus ipilimumab. INTERPRETATION: Perioperative nivolumab alone and nivolumab plus ipilimumab appears to be safe and feasible in patients with resectable hepatocellular carcinoma. Our findings support further studies of immunotherapy in the perioperative setting in hepatocellular carcinoma. FUNDING: Bristol Myers Squibb and the US National Institutes of Health.


Subject(s)
Antineoplastic Agents, Immunological/administration & dosage , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Carcinoma, Hepatocellular/drug therapy , Ipilimumab/administration & dosage , Liver Neoplasms/drug therapy , Nivolumab/administration & dosage , Aged , Alanine Transaminase/blood , Antineoplastic Agents, Immunological/adverse effects , Aspartate Aminotransferases/blood , Carcinoma, Hepatocellular/surgery , Female , Humans , Ipilimumab/adverse effects , Liver Neoplasms/surgery , Male , Middle Aged , Nivolumab/adverse effects , Perioperative Care , Progression-Free Survival
13.
Nat Commun ; 12(1): 6375, 2021 11 04.
Article in English | MEDLINE | ID: mdl-34737281

ABSTRACT

Cryoablation in combination with immune checkpoint therapy was previously reported to improve anti-tumor immune responses in pre-clinical studies. Here we report a pilot study of anti-CTLA-4 (tremelimumab) with (n = 15) or without (n = 14) cryoablation in patients with metastatic renal cell carcinoma (NCT02626130), 18 patients with clear cell and 11 patients with non-clear cell histologies. The primary endpoint is safety, secondary endpoints include objective response rate, progression-free survival, and immune monitoring studies. Safety data indicate ≥ grade 3 treatment-related adverse events in 16 of 29 patients (55%) including 6 diarrhea/colitis, 3 hepatitis, 1 pneumonitis, and 1 glomerulonephritis. Toxicity leading to treatment discontinuation occurs in 5 patients in each arm. 3 patients with clear cell histology experience durable responses. One patient in the tremelimumab arm experiences an objective response, the median progression-free survival for all patients is 3.3 months (95% CI: 2.0, 5.3 months). Exploratory immune monitoring analysis of baseline and post-treatment tumor tissue samples shows that treatment increases immune cell infiltration and tertiary lymphoid structures in clear cell but not in non-clear cell. In clear cell, cryoablation plus tremelimumab leads to a significant increase in immune cell infiltration. These data highlight that treatment with tremelimumab plus cryotherapy is feasible and modulates the immune microenvironment in patients with metastatic clear cell histology.


Subject(s)
Antibodies, Monoclonal, Humanized/administration & dosage , CTLA-4 Antigen/antagonists & inhibitors , Carcinoma, Renal Cell/drug therapy , Cryosurgery/methods , Kidney Neoplasms/drug therapy , Adult , Aged , Aged, 80 and over , Antineoplastic Agents, Immunological/administration & dosage , Carcinoma, Renal Cell/metabolism , Carcinoma, Renal Cell/pathology , Carcinoma, Renal Cell/surgery , Combined Modality Therapy , Female , Humans , Kidney Neoplasms/metabolism , Kidney Neoplasms/pathology , Kidney Neoplasms/surgery , Male , Middle Aged , Neoplasm Metastasis , Patient Safety , Pilot Projects , Survival Rate , Treatment Outcome , Young Adult
14.
J Immunother Cancer ; 9(10)2021 10.
Article in English | MEDLINE | ID: mdl-34663638

ABSTRACT

BACKGROUND: Immune checkpoint therapy (ICT) has low response rates in patients with metastatic castration-resistant prostate cancer (mCRPC), in part due to few T cells in the tumor microenvironment (TME). Anti-cytotoxic T lymphocyte-associated protein 4 (CTLA-4) promotes intratumoral T cell infiltration but induces upregulation of PD-1 and programmed death ligand-1 (PD-L1) within the prostate TME. Combined anti-CTLA-4 plus anti-PD-1 can partly overcome this adaptive resistance and was recently shown to augment responses in patients with mCRPC with measurable disease. Although bone is the most common site of metastasis in prostate cancer, patients with bone-predominant disease are frequently excluded from trials because they lack measurable disease, which limits assessment of disease progression and tissue sampling. We therefore designed this study to investigate combined ICT in mCRPC to bone. HYPOTHESIS: Combined anti-CTLA-4 (tremelimumab) plus anti-PD-L1 (durvalumab) is safe and well tolerated in patients with chemotherapy-naïve mCRPC to bone. PATIENTS AND METHODS: In this single-arm pilot study, men with chemotherapy-naïve mCRPC to bone received tremelimumab (75 mg intravenous) plus durvalumab (1500 mg intravenous) every 4 weeks (up to four doses), followed by durvalumab (1500 mg intravenous) maintenance every 4 weeks (up to nine doses). The primary endpoint was incidence of adverse events. Secondary endpoints included serum prostate-specific antigen (PSA), progression-free survival (PFS), radiographic PFS (rPFS), and maximal PSA decline. RESULTS: Twenty-six patients were treated between August 8, 2017 and March 28, 2019. Grade ≥3 treatment-related adverse events (TRAEs) occurred in 11 patients (42%), with no grade 4 or 5 events. TRAEs leading to discontinuation occurred in three patients (12%). PSA decline ≥50% occurred in three patients (12%). Six patients (24%) achieved stable disease for >6 months. At a median follow-up of 43.6 months, median rPFS was 3.7 months (95% CI: 1.9 to 5.7), and median overall survival was 28.1 months (95% CI: 14.5 to 37.3). Post-treatment evaluation of the bone microenvironment revealed transcriptional upregulation in myeloid and neutrophil immune subset signatures and increased expression of inhibitory immune checkpoints. CONCLUSIONS: Tremelimumab plus durvalumab was safe and well tolerated in patients with chemotherapy-naïve mCRPC to bone, with potential activity in a small number of patients as measured by rPFS. Combination of CTLA-4 and PD-L1 blockade with therapies targeting the myeloid compartment or other inhibitory immune receptors may be necessary to overcome mechanisms of resistance within prostate bone microenvironment. TRIAL REGISTRATION NUMBER: NCT03204812.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , CTLA-4 Antigen/therapeutic use , Immune Checkpoint Inhibitors/therapeutic use , Neutrophils/metabolism , Prostatic Neoplasms, Castration-Resistant/drug therapy , Aged , Aged, 80 and over , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Humans , Immune Checkpoint Inhibitors/pharmacology , Male , Middle Aged , Pilot Projects , Tumor Microenvironment
15.
Nat Commun ; 12(1): 6071, 2021 10 18.
Article in English | MEDLINE | ID: mdl-34663807

ABSTRACT

In contrast to the curative effect of allogenic stem cell transplantation in acute myeloid leukemia via T cell activity, only modest responses are achieved with checkpoint-blockade therapy, which might be explained by T cell phenotypes and T cell receptor (TCR) repertoires. Here, we show by paired single-cell RNA analysis and TCR repertoire profiling of bone marrow cells in relapsed/refractory acute myeloid leukemia patients pre/post azacytidine+nivolumab treatment that the disease-related T cell subsets are highly heterogeneous, and their abundance changes following PD-1 blockade-based treatment. TCR repertoires expand and primarily emerge from CD8+ cells in patients responding to treatment or having a stable disease, while TCR repertoires contract in therapy-resistant patients. Trajectory analysis reveals a continuum of CD8+ T cell phenotypes, characterized by differential expression of granzyme B and a bone marrow-residing memory CD8+ T cell subset, in which a population with stem-like properties expressing granzyme K is enriched in responders. Chromosome 7/7q loss, on the other hand, is a cancer-intrinsic genomic marker of PD-1 blockade resistance in AML. In summary, our study reveals that adaptive T cell plasticity and genomic alterations determine responses to PD-1 blockade in acute myeloid leukemia.


Subject(s)
Immune Checkpoint Inhibitors/therapeutic use , Leukemia, Myeloid, Acute/drug therapy , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Receptors, Antigen, T-Cell/metabolism , T-Lymphocytes/drug effects , Aged , Aged, 80 and over , Azacitidine/therapeutic use , Bone Marrow/drug effects , Bone Marrow/immunology , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Chromosome Deletion , Chromosomes, Human, Pair 7/genetics , Drug Resistance, Neoplasm/genetics , Granzymes/metabolism , Humans , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/immunology , Middle Aged , Nivolumab/therapeutic use , Receptors, Antigen, T-Cell/genetics , Single-Cell Analysis , T-Lymphocyte Subsets/drug effects , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Transcriptome/drug effects
16.
Nat Commun ; 12(1): 5045, 2021 08 19.
Article in English | MEDLINE | ID: mdl-34413300

ABSTRACT

Radiographic imaging is the standard approach for evaluating the disease involvement of lymph nodes in patients with operable NSCLC although the impact of neoadjuvant immune checkpoint inhibitors (ICIs) on lymph nodes has not yet been characterized. Herein, we present an ad hoc analysis of the NEOSTAR trial (NCT03158129) where we observed a phenomenon we refer to as "nodal immune flare" (NIF) in which patients treated with neoadjuvant ICIs demonstrate radiologically abnormal nodes post-therapy that upon pathological evaluation are devoid of cancer and demonstrate de novo non-caseating granulomas. Abnormal lymph nodes are analyzed by computed tomography and 18F-fluorodeoxyglucose positron emission tomography/computer tomography to evaluate the size and the maximum standard uptake value post- and pre-therapy in NEOSTAR and an independent neoadjuvant chemotherapy cohort. NIF occurs in 16% (7/44) of patients treated with ICIs but in 0% (0/28) of patients after neoadjuvant chemotherapy. NIF is associated with an inflamed nodal immune microenvironment and with fecal abundance of genera belonging to the family Coriobacteriaceae of phylum Actinobacteria, but not with tumor responses or treatment-related toxicity. Our findings suggest that this apparent radiological cancer progression in lymph nodes may occur due to an inflammatory response after neoadjuvant immunotherapy, and such cases should be evaluated by pathological examination to distinguish NIF from true nodal progression and to ensure appropriate clinical treatment planning.


Subject(s)
Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/immunology , Immune Checkpoint Inhibitors/adverse effects , Lung Neoplasms/drug therapy , Lung Neoplasms/immunology , Lymph Nodes/immunology , Lymph Nodes/pathology , Aged , Carcinoma, Non-Small-Cell Lung/diagnostic imaging , Carcinoma, Non-Small-Cell Lung/pathology , Disease Progression , Female , Humans , Immune Checkpoint Inhibitors/administration & dosage , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/pathology , Lymph Nodes/drug effects , Lymphatic Metastasis , Male , Middle Aged , Multimodal Imaging/methods , Neoadjuvant Therapy
17.
Clin Cancer Res ; 27(16): 4557-4565, 2021 08 15.
Article in English | MEDLINE | ID: mdl-34187851

ABSTRACT

PURPOSE: In locoregionally advanced, resectable cutaneous squamous cell carcinoma of the head and neck (CSCC-HN), surgery followed by radiotherapy is standard but can be cosmetically and functionally devastating, and many patients will have recurrence. PATIENTS AND METHODS: Newly diagnosed or recurrent stage III-IVA CSCC-HN patients amenable to curative-intent surgery received two cycles of neoadjuvant PD-1 inhibition. The primary endpoint was ORR per RECIST 1.1. Secondary endpoints included pathologic response [pathologic complete response (pCR) or major pathologic response (MPR; ≤10% viable tumor)], safety, DSS, DFS, and OS. Exploratory endpoints included immune biomarkers of response. RESULTS: Of 20 patients enrolled, 7 had recurrent disease. While only 6 patients [30%; 95% confidence interval (CI), 11.9-54.3] had partial responses by RECIST, 14 patients (70%; 95% CI, 45.7-88.1) had a pCR (n = 11) or MPR (n = 3). No SAEs ocurred during or after the neoadjuvant treatment. At a median follow-up of 22.6 months (95% CI, 21.7-26.1), one patient progressed and died, one died without disease, and two developed recurrence. The 12-month DSS, DFS, and OS rates were 95% (95% CI, 85.9-100), 89.5% (95% CI, 76.7-100), and 95% (95% CI, 85.9-100), respectively. Gene expression studies revealed an inflamed tumor microenvironment in patients with pCR or MPR, and CyTOF analyses demonstrated a memory CD8+ T-cell cluster enriched in patients with pCR. CONCLUSIONS: Neoadjuvant immunotherapy in locoregionally advanced, resectable CSCC-HN is safe and induces a high pathologic response rate. Pathologic responses were associated with an inflamed tumor microenvironment.


Subject(s)
Head and Neck Neoplasms/drug therapy , Immune Checkpoint Inhibitors/therapeutic use , Immunotherapy , Skin Neoplasms/drug therapy , Squamous Cell Carcinoma of Head and Neck/drug therapy , Aged , Female , Head and Neck Neoplasms/pathology , Head and Neck Neoplasms/surgery , Humans , Male , Middle Aged , Neoadjuvant Therapy , Neoplasm Staging , Pilot Projects , Skin Neoplasms/pathology , Skin Neoplasms/surgery , Squamous Cell Carcinoma of Head and Neck/pathology , Squamous Cell Carcinoma of Head and Neck/surgery
18.
Nat Med ; 26(12): 1845-1851, 2020 12.
Article in English | MEDLINE | ID: mdl-33046869

ABSTRACT

Immune checkpoint therapy is being tested in the neoadjuvant setting for patients with localized urothelial carcinoma1,2, with one study reporting data in cisplatin-ineligible patients who received anti-PD-L1 monotherapy2. The study reported that patients with bulky tumors, a known high-risk feature defined as greater than clinical T2 disease, had fewer responses, with pathological complete response rate of 17%2. Here we report on the first pilot combination neoadjuvant trial ( NCT02812420 ) with anti-PD-L1 (durvalumab) plus anti-CTLA-4 (tremelimumab) in cisplatin-ineligible patients, with all tumors identified as having high-risk features (n = 28). High-risk features were defined by bulky tumors, variant histology, lymphovascular invasion, hydronephrosis and/or high-grade upper tract disease3-5. The primary endpoint was safety and we observed 6 of 28 patients (21%) with grade ≥3 immune-related adverse events, consisting of asymptomatic laboratory abnormalities (n = 4), hepatitis and colitis (n = 2). We also observed pathological complete response of 37.5% and downstaging to pT1 or less in 58% of patients who completed surgery (n = 24). In summary, we provide initial safety, efficacy and biomarker data with neoadjuvant combination anti-PD-L1 plus anti-CTLA-4, which warrants further development for patients with localized urothelial carcinoma, especially cisplatin-ineligible patients with high-risk features who do not currently have an established standard-of-care neoadjuvant treatment.


Subject(s)
Antibodies, Monoclonal, Humanized/administration & dosage , Antibodies, Monoclonal/administration & dosage , Carcinoma/drug therapy , Urothelium/pathology , Adult , Aged , Antibodies, Monoclonal/adverse effects , Antibodies, Monoclonal, Humanized/adverse effects , Antineoplastic Agents, Immunological/administration & dosage , Antineoplastic Agents, Immunological/adverse effects , Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Antineoplastic Combined Chemotherapy Protocols/adverse effects , CTLA-4 Antigen/antagonists & inhibitors , CTLA-4 Antigen/immunology , Carcinoma/immunology , Carcinoma/pathology , Cisplatin/adverse effects , Female , Humans , Male , Middle Aged , Neoplasm Staging , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/immunology , Risk Factors , Urothelium/drug effects , Urothelium/immunology
19.
Sci Transl Med ; 12(548)2020 06 17.
Article in English | MEDLINE | ID: mdl-32554706

ABSTRACT

Immune checkpoint therapy (ICT) can produce durable antitumor responses in metastatic urothelial carcinoma (mUCC); however, the responses are not universal. Despite multiple approvals of ICT in mUCC, we lack predictive biomarkers to guide patient selection. The identification of biomarkers may require interrogation of both the tumor mutational status and the immune microenvironment. Through multi-platform immuno-genomic analyses of baseline tumor tissues, we identified the mutation of AT-rich interactive domain-containing protein 1A (ARID1A) in tumor cells and expression of immune cytokine CXCL13 in the baseline tumor tissues as two predictors of clinical responses in a discovery cohort (n = 31). Further, reverse translational studies revealed that CXCL13-/- tumor-bearing mice were resistant to ICT, whereas ARID1A knockdown enhanced sensitivity to ICT in a murine model of bladder cancer. Next, we tested the clinical relevance of ARID1A mutation and baseline CXCL13 expression in two independent confirmatory cohorts (CheckMate275 and IMvigor210). We found that ARID1A mutation and expression of CXCL13 in the baseline tumor tissues correlated with improved overall survival (OS) in both confirmatory cohorts (CheckMate275, CXCL13 data, n = 217; ARID1A data, n = 139, and IMvigor210, CXCL13 data, n = 348; ARID1A data, n = 275). We then interrogated CXCL13 expression plus ARID1A mutation as a combination biomarker in predicting response to ICT in CheckMate275 and IMvigor210. Combination of the two biomarkers in baseline tumor tissues suggested improved OS compared to either single biomarker. Cumulatively, this study revealed that the combination of CXCL13 plus ARID1A may improve prediction capability for patients receiving ICT.


Subject(s)
Urinary Bladder Neoplasms , Animals , Biomarkers , Biomarkers, Tumor/genetics , Chemokine CXCL13 , DNA-Binding Proteins , Humans , Mice , Mutation/genetics , Transcription Factors/genetics , Tumor Microenvironment , Urinary Bladder Neoplasms/drug therapy , Urinary Bladder Neoplasms/genetics
20.
Nat Med ; 26(1): 39-46, 2020 01.
Article in English | MEDLINE | ID: mdl-31873309

ABSTRACT

Immune checkpoint therapy with anti-CTLA-4 and anti-PD-1/PD-L1 has revolutionized the treatment of many solid tumors. However, the clinical efficacy of immune checkpoint therapy is limited to a subset of patients with specific tumor types1,2. Multiple clinical trials with combinatorial immune checkpoint strategies are ongoing; however, the mechanistic rationale for tumor-specific targeting of immune checkpoints is elusive. To garner an insight into tumor-specific immunomodulatory targets, we analyzed 94 patients representing five different cancer types, including those that respond relatively well to immune checkpoint therapy and those that do not, such as glioblastoma multiforme, prostate cancer and colorectal cancer. Through mass cytometry and single-cell RNA sequencing, we identified a unique population of CD73hi macrophages in glioblastoma multiforme that persists after anti-PD-1 treatment. To test if targeting CD73 would be important for a successful combination strategy in glioblastoma multiforme, we performed reverse translational studies using CD73-/- mice. We found that the absence of CD73 improved survival in a murine model of glioblastoma multiforme treated with anti-CTLA-4 and anti-PD-1. Our data identified CD73 as a specific immunotherapeutic target to improve antitumor immune responses to immune checkpoint therapy in glioblastoma multiforme and demonstrate that comprehensive human and reverse translational studies can be used for rational design of combinatorial immune checkpoint strategies.


Subject(s)
5'-Nucleotidase/metabolism , Brain Neoplasms/immunology , Brain Neoplasms/therapy , Glioblastoma/immunology , Glioblastoma/therapy , Molecular Targeted Therapy , Algorithms , Animals , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/genetics , Cell Line, Tumor , Disease Models, Animal , GPI-Linked Proteins/metabolism , Gene Expression Regulation, Neoplastic , Glioblastoma/diagnostic imaging , Glioblastoma/genetics , Humans , Immunotherapy , Lymphocytes, Tumor-Infiltrating/immunology , Macrophages/metabolism , Magnetic Resonance Imaging , Mice, Inbred C57BL , Myeloid Cells/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...