Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 69
Filter
Add more filters










Publication year range
1.
Front Oncol ; 14: 1367962, 2024.
Article in English | MEDLINE | ID: mdl-38715784

ABSTRACT

Introduction: Prostate-specific membrane antigen (PSMA) is present in high amounts in salivary glands, but it is unclear whether labeled binders of PSMA are excreted in the saliva. Methods: Ten patients with prostate cancer underwent whole-body [18F]DCFPyL PET/CT (NCT03181867), and saliva samples were collected between 0-120 minutes post-injection. [18F]DCFPyL salivary excretion was measured over 120 minutes and expressed as %ID/g. Protein-associated binding was estimated by the percentage of [18F]DCFPyL versus parent radiotracer. Results: All PET scans of 10 patients (69 ± 8 years) with histologically confirmed prostate cancer (PSA= 2.4 ± 2.4, and Gleason Grade = 6-9) showed high uptake of [18F]-DCFPyL in salivary glands while 8 patients demonstrated high uptake in the saliva at 45 minutes. The intact [18F]-DCFPyL (98%) was also confirmed in the saliva samples at 120 min with increasing salivary radioactivity between 30-120 min. Conclusion: Systemically injected [18F]DCFPyL shows salivary gland uptake, an increasing amount of which is secreted in saliva over time and is not maximized by 120 minutes post-injection. Although probably insignificant for diagnostic studies, patients undergoing PSMA-targeted therapies should be aware of radioactivity in saliva.

2.
Pharmaceuticals (Basel) ; 17(4)2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38675440

ABSTRACT

Desferrioxamine B (DFO) is the clinical standard chelator for preparing zirconium-89 labeled antibodies. In the current study, the stabilities of a zirconium-89 labeled panitumumab (PAN; Vectibix®) with three different chelators (DFO, DFO*, and DOTA) were compared. PAN is an anti-HER1/EGFR monoclonal antibody approved by the FDA for the treatment of HER1-expressing colorectal cancers and was used as the model antibody for this study. DFO/DFO* conjugates of PAN were directly radiolabeled with zirconium-89 at room temperature to produce [89Zr]Zr-DFO/DFO*-PAN conjugates following a well-established procedure. A zirconium-89 labeled DOTA-PAN conjugate was prepared by an indirect radiolabeling method. A cyclooctyne-linked DOTA chelator (BCN-DOTA-GA) was first radiolabeled with zirconium-89 at 90 °C under a two-step basic pH adjustment method followed by conjugation with PAN-tetrazene at 37 °C to produce a labeled conjugate, BCN-[89Zr]Zr-DOTA-GA-PAN. High reproducibility of the radiolabeling was observed via this two-step basic pH adjustment. The overall radiochemical yield was 40-50% (n = 12, decay uncorrected) with a radiochemical purity of >95% in 2 h synthesis time. All three conjugates were stable in whole human serum for up to 7 days at 37 °C. The kinetic inertness of the conjugates was assessed against the EDTA challenge. BCN-[89Zr]Zr-DOTA-GA-PAN exhibited excellent inertness followed by [89Zr]Zr-DFO*-PAN. [89Zr]Zr-DFO-PAN displayed the lowest level of inertness.

3.
Cell Rep ; 42(12): 113503, 2023 12 26.
Article in English | MEDLINE | ID: mdl-38019654

ABSTRACT

CD276/B7-H3 represents a promising target for cancer therapy based on widespread overexpression in both cancer cells and tumor-associated stroma. In previous preclinical studies, CD276 antibody-drug conjugates (ADCs) exploiting a talirine-type pyrrolobenzodiazepine (PBD) payload showed potent activity against various solid tumors but with a narrow therapeutic index and dosing regimen higher than that tolerated in clinical trials using other antibody-talirine conjugates. Here, we describe the development of a modified talirine PBD-based fully human CD276 ADC, called m276-SL-PBD, that is cross-species (human/mouse) reactive and can eradicate large 500-1,000-mm3 triple-negative breast cancer xenografts at doses 10- to 40-fold lower than the maximum tolerated dose. By combining CD276 targeting with judicious genetic and chemical ADC engineering, improved ADC purification, and payload sensitivity screening, these studies demonstrate that the therapeutic index of ADCs can be substantially increased, providing an advanced ADC development platform for potent and selective targeting of multiple solid tumor types.


Subject(s)
Immunoconjugates , Neoplasms , Humans , Mice , Animals , Immunoconjugates/pharmacology , Cell Line, Tumor , Xenograft Model Antitumor Assays , Antibodies, Monoclonal, Humanized , Transcription Factors , Neoplasms/drug therapy , B7 Antigens
4.
bioRxiv ; 2023 Apr 03.
Article in English | MEDLINE | ID: mdl-37333343

ABSTRACT

Tuberculosis remains a large global disease burden for which treatment regimens are protracted and monitoring of disease activity difficult. Existing detection methods rely almost exclusively on bacterial culture from sputum which limits sampling to organisms on the pulmonary surface. Advances in monitoring tuberculous lesions have utilized the common glucoside [18F]FDG, yet lack specificity to the causative pathogen Mycobacterium tuberculosis (Mtb) and so do not directly correlate with pathogen viability. Here we show that a close mimic that is also positron-emitting of the non-mammalian Mtb disaccharide trehalose - 2-[18F]fluoro-2-deoxytrehalose ([18F]FDT) - can act as a mechanism-based enzyme reporter in vivo. Use of [18F]FDT in the imaging of Mtb in diverse models of disease, including non-human primates, successfully co-opts Mtb-specific processing of trehalose to allow the specific imaging of TB-associated lesions and to monitor the effects of treatment. A pyrogen-free, direct enzyme-catalyzed process for its radiochemical synthesis allows the ready production of [18F]FDT from the most globally-abundant organic 18F-containing molecule, [18F]FDG. The full, pre-clinical validation of both production method and [18F]FDT now creates a new, bacterium-specific, clinical diagnostic candidate. We anticipate that this distributable technology to generate clinical-grade [18F]FDT directly from the widely-available clinical reagent [18F]FDG, without need for either bespoke radioisotope generation or specialist chemical methods and/or facilities, could now usher in global, democratized access to a TB-specific PET tracer.

5.
Molecules ; 28(9)2023 Apr 27.
Article in English | MEDLINE | ID: mdl-37175182

ABSTRACT

The use of radiolabeled glucose for PET imaging resulted in the most commonly used tracer in the clinic, 2-deoxy-2-[18F]fluoroglucose (FDG). More recently, other radiolabeled sugars have been reported for various applications, including imaging tumors and infections. Therefore, in this study, we developed a series of fluorine-18-labeled L-rhamnose derivatives as potential PET tracers of various fungal and bacterial strains. Acetyl-protected triflate precursors of rhamnose were prepared and radiolabeled with fluorine-18 followed by hydrolysis to produce L-deoxy [18F]fluororhamnose. The overall radiochemical yield was 7-27% in a 90 min synthesis time with a radiochemical purity of 95%. In vivo biodistribution of the ligands using PET imaging showed that 2-deoxy-2-[18F]fluoro-L-rhamnose is stable for at least up to 60 min in mice and eliminated via renal clearance. The tracer also exhibited minimal tissue or skeletal uptake in healthy mice resulting in a low background signal.


Subject(s)
Fluorine Radioisotopes , Rhamnose , Mice , Animals , Tissue Distribution , Cell Line, Tumor , Positron-Emission Tomography/methods , Radiopharmaceuticals
6.
Cancer Biother Radiopharm ; 38(7): 475-485, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37253167

ABSTRACT

Background: Osteosarcoma (OS) is an aggressive pediatric cancer with unmet therapeutic needs. Glutaminase 1 (GLS1) inhibition, alone and in combination with metformin, disrupts the bioenergetic demands of tumor progression and metastasis, showing promise for clinical translation. Materials and Methods: Three positron emission tomography (PET) clinical imaging agents, [18F]fluoro-2-deoxy-2-D-glucose ([18F]FDG), 3'-[18F]fluoro-3'-deoxythymidine ([18F]FLT), and (2S, 4R)-4-[18F]fluoroglutamine ([18F]GLN), were evaluated in the MG63.3 human OS xenograft mouse model, as companion imaging biomarkers after treatment for 7 d with a selective GLS1 inhibitor (CB-839, telaglenastat) and metformin, alone and in combination. Imaging and biodistribution data were collected from tumors and reference tissues before and after treatment. Results: Drug treatment altered tumor uptake of all three PET agents. Relative [18F]FDG uptake decreased significantly after telaglenastat treatment, but not within control and metformin-only groups. [18F]FLT tumor uptake appears to be negatively affected by tumor size. Evidence of a flare effect was seen with [18F]FLT imaging after treatment. Telaglenastat had a broad influence on [18F]GLN uptake in tumor and normal tissues. Conclusions: Image-based tumor volume quantification is recommended for this paratibial tumor model. The performance of [18F]FLT and [18F]GLN was affected by tumor size. [18F]FDG may be useful in detecting telaglenastat's impact on glycolysis. Exploration of kinetic tracer uptake protocols is needed to define clinically relevant patterns of [18F]GLN uptake in patients receiving telaglenastat.


Subject(s)
Bone Neoplasms , Metformin , Osteosarcoma , Humans , Mice , Animals , Child , Fluorodeoxyglucose F18 , Tissue Distribution , Heterografts , Positron-Emission Tomography/methods , Disease Models, Animal , Osteosarcoma/diagnostic imaging , Osteosarcoma/drug therapy , Metformin/pharmacology , Metformin/therapeutic use , Bone Neoplasms/diagnostic imaging , Bone Neoplasms/drug therapy , Biomarkers , Radiopharmaceuticals
7.
Front Immunol ; 13: 1010263, 2022.
Article in English | MEDLINE | ID: mdl-36439175

ABSTRACT

There is current need for new approaches to assess/measure organ-level immunoreactivity and ensuing dysfunction in systemic inflammatory response syndrome (SIRS) and sepsis, in order to protect or recover organ function. Using a rat model of systemic sterile inflammatory shock (intravenous LPS administration), we performed PET imaging with a translocator protein (TSPO) tracer, [18F]DPA-714, as a biomarker for reactive immunoreactive changes in the brain and peripheral organs. In vivo dynamic PET/CT scans showed increased [18F]DPA-714 binding in the brain, lungs, liver and bone marrow, 4 hours after LPS injection. Post-LPS mean standard uptake values (SUVmean) at equilibrium were significantly higher in those organs compared to baseline. Changes in spleen [18F]DPA-714 binding were variable but generally decreased after LPS. SUVmean values in all organs, except the spleen, positively correlated with several serum cytokines/chemokines. In vitro measures of TSPO expression and immunofluorescent staining validated the imaging results. Noninvasive molecular imaging with [18F]DPA-714 PET in a rat model of systemic sterile inflammatory shock, along with in vitro measures of TSPO expression, showed brain, liver and lung inflammation, spleen monocytic efflux/lymphocytic activation and suggested increased bone marrow hematopoiesis. TSPO PET imaging can potentially be used to quantify SIRS and sepsis-associated organ-level immunoreactivity and assess the effectiveness of therapeutic and preventative approaches for associated organ failures, in vivo.


Subject(s)
Fluorine Radioisotopes , Sepsis , Animals , Rats , Lipopolysaccharides , Positron Emission Tomography Computed Tomography , Positron-Emission Tomography/methods , Carrier Proteins/metabolism , Sepsis/diagnostic imaging , Systemic Inflammatory Response Syndrome/diagnostic imaging , Receptors, GABA-A/metabolism
8.
Discov Oncol ; 13(1): 97, 2022 Oct 01.
Article in English | MEDLINE | ID: mdl-36181613

ABSTRACT

BACKGROUND: The activities of MYC, the androgen receptor, and its associated pioneer factors demonstrate substantial reprogramming between early and advanced prostate cancer. Although previous studies have shown a shift in cellular metabolic requirements associated with prostate cancer progression, the epigenetic regulation of these processes is incompletely described. Here, we have integrated chromatin immunoprecipitation sequencing (ChIP-seq) and whole-transcriptome sequencing to identify novel regulators of metabolism in advanced prostate tumors characterized by elevated MYC activity. RESULTS: Using ChIP-seq against MYC, HOXB13, and AR in LNCaP cells, we observed redistribution of co-bound sites suggestive of differential KMT2A activity as a function of MYC expression. In a cohort of 177 laser-capture microdissected foci of prostate tumors, KMT2A expression was positively correlated with MYC activity, AR activity, and HOXB13 expression, but decreased with tumor grade severity. However, KMT2A expression was negatively correlated with these factors in 25 LuCaP patient-derived xenograft models of advanced prostate cancer and 99 laser-capture microdissected foci of metastatic castration-resistant prostate cancer. Stratified by KMT2A expression, ChIP-seq against AR and HOXB13 in 15 LuCaP patient-derived xenografts showed an inverse association with sites involving genes implicated in lipid metabolism, including the arachidonic acid metabolic enzyme PLA2G4F. LuCaP patient-derived xenograft models grown as organoids recapitulated the inverse association between KMT2A expression and fluorine-18 labeled arachidonic acid uptake in vitro. CONCLUSIONS: Our study demonstrates that the epigenetic activity of transcription factor oncogenes exhibits a shift during prostate cancer progression with distinctive phenotypic effects on metabolism. These epigenetically driven changes in lipid metabolism may serve as novel targets for the development of novel imaging agents and therapeutics.

9.
J Transl Med ; 20(1): 375, 2022 08 18.
Article in English | MEDLINE | ID: mdl-35982453

ABSTRACT

BACKGROUND: Several new generation CDK4/6 inhibitors have been developed and approved for breast cancer therapy in combination with endocrine therapeutics. Application of these inhibitors either alone or in combination in other solid tumors has been proposed, but no imaging biomarkers of response have been reported in non-breast cancer animal models. The purpose of this study was to evaluate 3'-[18F]fluoro-3'-deoxythymidine ([18F]FLT) Positron Emission Tomography (PET) as in vivo biomarker of response to palbociclib in a non-breast cancer model. METHODS: Twenty-four NSG mice bearing patient derived xenografts (PDX) of a well-characterized bladder tumor were randomized into 4 treatment groups: vehicle (n = 6); palbociclib (n = 6); temozolomide (n = 6); and palbociclib plus temozolomide (n = 6) and treated with two cycles of therapy or vehicle. Tumor uptake of [18F]FLT was determined by micro-PET/CT at baseline, 3 days, and 9 days post initiation of therapy. Following the second cycle of therapy, the mice were maintained until their tumors reached a size requiring humane termination. RESULTS: [18F]FLT uptake decreased significantly in the palbociclib and combination arms (p = 0.0423 and 0.0106 respectively at day 3 and 0.0012 and 0.0031 at day 9) with stable tumor volume. In the temozolomide arm [18F]FLT uptake increased with day 9 uptake significantly different than baseline (p = 0.0418) and progressive tumor growth was observed during the treatment phase. All groups exhibited progressive disease after day 22, 10 days following cessation of therapy. CONCLUSION: Significant decreases in [18F]FLT uptake as early as three days post initiation of therapy with palbociclib, alone or in combination with temozolomide, in this bladder cancer model correlates with an absence of tumor growth during therapy that persists until day 18 for the palbociclib group and day 22 for the combination group (6 days and 10 days) following cessation of therapy. These results support early modulation of [18F]FLT as an in vivo biomarker predictive of palbociclib therapy response in a non-breast cancer model.


Subject(s)
Dideoxynucleosides , Urinary Bladder Neoplasms , Animals , Biomarkers , Cell Line, Tumor , Dideoxynucleosides/metabolism , Humans , Mice , Piperazines , Positron Emission Tomography Computed Tomography , Positron-Emission Tomography/methods , Pyridines , Temozolomide/therapeutic use , Thymidine , Urinary Bladder Neoplasms/diagnostic imaging , Urinary Bladder Neoplasms/drug therapy
10.
Pharmaceuticals (Basel) ; 15(5)2022 May 13.
Article in English | MEDLINE | ID: mdl-35631423

ABSTRACT

High expression of prostate-specific membrane antigen (PSMA) in prostate cancers prompted the development of the PSMA-targeted PET-imaging agent [18F]DCFPyL, which was recently approved by the FDA. Fluorine-18-labeled Lys-Urea-Glu-based oxime derivatives of [18F]DCFPyL were prepared for the comparison of their in vitro and in vivo properties to potentially improve kidney clearance and tumor targeting. The oxime radiotracers were produced by condensation of an aminooxy functionalized PSMA-inhibitor Lys-Urea-Glu scaffold with fluorine-18-labeled aldehydes. The radiochemical yields were between 15-42% (decay uncorrected) in 50-60 min. In vitro saturation and competition binding assays with human prostate cancer cells transfected with PSMA, PC3(+), indicated similar high nM binding affinities to PSMA for all radiotracers. In vivo biodistribution studies with positive control PC3(+) tumor xenografts showed that the kidneys had the highest uptake followed by tumors at 60 min. The PC3(+) tumor uptake was blocked with non-radioactive DCFPyL, and PC3(-) tumor xenograft (negative control) tumor uptake was negligible indicating that PSMA targeting was preserved. The most lipophilic tracer, [18F]2a, displayed comparable tumor-targeting to [18F]DCFPyL and a desirable alteration in pharmacokinetics and metabolism, resulting in significantly lower kidney uptake with a shift towards hepatobiliary clearance and increased liver uptake.

11.
Proc Natl Acad Sci U S A ; 119(15): e2110846119, 2022 04 12.
Article in English | MEDLINE | ID: mdl-35385353

ABSTRACT

Ebola virus (EBOV) disease is characterized by lymphopenia, breach in vascular integrity, cytokine storm, and multiorgan failure. The pathophysiology of organ involvement, however, is incompletely understood. Using [18F]-DPA-714 positron emission tomography (PET) imaging targeting the translocator protein (TSPO), an immune cell marker, we sought to characterize the progression of EBOV-associated organ-level pathophysiology in the EBOV Rhesus macaque model. Dynamic [18F]-DPA-714 PET/computed tomography imaging was performed longitudinally at baseline and at multiple time points after EBOV inoculation, and distribution volumes (Vt) were calculated as a measure of peripheral TSPO binding. Using a mixed-effect linear regression model, spleen and lung Vt decreased, while the bone marrow Vt increased over time after infection. No clear trend was found for liver Vt. Multiple plasma cytokines correlated negatively with lung/spleen Vt and positively with bone marrow Vt. Multiplex immunofluorescence staining in spleen and lung sections confirmed organ-level lymphoid and monocytic loss/apoptosis, thus validating the imaging results. Our findings are consistent with EBOV-induced progressive monocytic and lymphocytic depletion in the spleen, rather than immune activation, as well as depletion of alveolar macrophages in the lungs, with inefficient reactive neutrophilic activation. Increased bone marrow Vt, on the other hand, suggests hematopoietic activation in response to systemic immune cell depletion and leukocytosis and could have prognostic relevance. In vivo PET imaging provided better understanding of organ-level pathophysiology during EBOV infection. A similar approach can be used to delineate the pathophysiology of other systemic infections and to evaluate the effectiveness of newly developed treatment and vaccine strategies.


Subject(s)
Hemorrhagic Fever, Ebola , Positron-Emission Tomography , Receptors, GABA , Animals , Biomarkers/metabolism , Disease Models, Animal , Hemorrhagic Fever, Ebola/diagnostic imaging , Hemorrhagic Fever, Ebola/pathology , Lung/pathology , Macaca mulatta , Positron-Emission Tomography/methods , Pyrazoles/metabolism , Pyrimidines/metabolism , Receptors, GABA/metabolism , Spleen/pathology
12.
Molecules ; 26(18)2021 Sep 11.
Article in English | MEDLINE | ID: mdl-34576993

ABSTRACT

In this report, a simple and efficient process to achieve fluorine-18-labeled 1,2,3-triazole is reported. The heteroaromatic radiofluorination was successfully achieved through an iodine-fluorine-18 exchange in an aqueous medium requiring only trace amounts of base and no azeotropic drying of fluorine-18. This methodology was optimized on a model reaction and further validated on multiple 1,2,3-triazole substrates with 18-60% radiochemical conversions. Using this strategy-the radiosynthesis of a triazole-based thiamin analogue-a potential positron emission tomography (PET) probe for imaging thiamin-dependent enzymes was synthesized with 10-16% isolated radiochemical yield (RCY) in 40 min (uncorrected, n > 5).

13.
EJNMMI Res ; 11(1): 66, 2021 Jul 21.
Article in English | MEDLINE | ID: mdl-34287731

ABSTRACT

BACKGROUND: PSMA-targeted radionuclide therapy (TRT) is a promising treatment for prostate cancer (PCa), but dose-limiting xerostomia can severely limit its clinical adaptation, especially when using alpha-emitting radionuclides. With [18F]DCFPyL as a surrogate for PSMA-TRT, we report a novel method to selectively reduce salivary gland (SG) uptake of systemically administered [18F]DCFPyL by immediate prior infusion of non-radioactive standard of [18F]DCFPyL (DCFPyL) directly into the SG via retrograde cannulation. METHODS: A dose-finding cohort using athymic nude mice demonstrated proof of principle that SG uptake can be selectively blocked by DCFPyL administered either locally via cannulation (CAN group) or systemically (SYS group). The experiments were repeated in a validation cohort of 22RV1 tumor-bearing mice. Submandibular glands (SMG) of CAN mice were locally blocked with either saline or DCFPyL (dose range: 0.01× to 1000× molar equivalent of the radioactive [18F]DCFPyL dose). The radioactive dose of [18F]DCFPyL was administered systemically 10 min later and the mice euthanized after 1 h for biodistribution studies. Toxicity studies were done at up to 1000× dose. RESULTS: In the dose-finding cohort, the SYS group showed a dose-dependent 12-40% decrease in both the SMG T/B and the kidney (tumor surrogate). Mild blocking was observed at 0.01× , with maximal blocking reached at 1× with no additional blocking up to 1000× . In the CAN group, blocking at the 0.1× and 1× dose levels resulted in a similar 42-53% decrease, but without the corresponding decrease in kidney uptake as seen in the SYS group. Some evidence of "leakage" of DCFPyL from the salivary gland into the systemic circulation was observed. However, experiments in 22RV1 tumor-bearing mice at the 0.1× and 1× dose levels confirm that, at the appropriate blocking dose, SG uptake of [18F]DCFPyL can be selectively reduced without affecting tumor uptake and with no toxicity. CONCLUSION: Our results suggest that direct retrograde instillation of DCFPyL into the SG could predictably and selectively decrease salivary uptake of systemically administered [18F]DCFPyL without altering tumor uptake, if given at the appropriate dose. This novel approach is easily translatable to clinical practice and has the potential to mitigate xerostomia, without compromising the therapeutic efficacy of the PSMA-TRT.

14.
Neuro Oncol ; 23(10): 1723-1735, 2021 10 01.
Article in English | MEDLINE | ID: mdl-34216463

ABSTRACT

BACKGROUND: High-grade meningioma is an aggressive type of brain cancer that is often recalcitrant to surgery and radiotherapy, leading to poor overall survival. Currently, there are no FDA-approved drugs for meningioma, highlighting the need for new therapeutic options, but development is challenging due to the lack of predictive preclinical models. METHODS: To leverage the known overexpression of procaspase-3 in meningioma, PAC-1, a blood-brain barrier penetrant procaspase-3 activator, was evaluated for its ability to induce apoptosis in meningioma cells. To enhance the effects of PAC-1, combinations with either hydroxyurea or temozolomide were explored in cell culture. Both combinations were further investigated in small groups of canine meningioma patients and assessed by MRI, and the novel apoptosis tracer, [18F]C-SNAT4, was evaluated in patients treated with PAC-1 + HU. RESULTS: In meningioma cell lines in culture, PAC-1 + HU are synergistic while PAC-1 + TMZ show additive-to-synergistic effects. In canine meningioma patients, PAC-1 + HU led to stabilization of disease and no change in apoptosis within the tumor, whereas PAC-1 + TMZ reduced tumor burden in all three canine patients treated. CONCLUSIONS: Our results suggest PAC-1 + TMZ as a potentially efficacious combination for the treatment of human meningioma, and also demonstrate the utility of including pet dogs with meningioma as a means to assess anticancer strategies for this common brain tumor.


Subject(s)
Meningeal Neoplasms , Meningioma , Animals , Apoptosis , Caspase 3 , Cell Culture Techniques , Cell Line, Tumor , Dogs , Humans , Hydroxyurea/pharmacology , Meningeal Neoplasms/drug therapy , Meningeal Neoplasms/veterinary , Meningioma/drug therapy , Meningioma/veterinary , Temozolomide/pharmacology
15.
Cancer Biother Radiopharm ; 36(4): 316-325, 2021 May.
Article in English | MEDLINE | ID: mdl-34014767

ABSTRACT

Introduction: [227Th]Th-3,2-HOPO-MSLN-mAb, a mesothelin (MSLN)-targeted thorium-227 therapeutic conjugate, is currently in phase I clinical trial; however, direct PET imaging using this conjugate is technically challenging. Thus, using the same MSLN antibody, we synthesized 3,2-HOPO and deferoxamine (DFO)-based zirconium-89 antibody conjugates, [89Zr]Zr-3,2-HOPO-MSLN-mAb and [89Zr]Zr-DFO-MSLN-mAb, respectively, and compared them in vitro and in vivo. Methods: [89Zr]Zr-3,2-HOPO-MSLN-mAb and [89Zr]Zr-DFO-MSLN-mAb were evaluated in vitro to determine binding affinity and immunoreactivity in HT29-MSLN and PDX (NCI-Meso16, NCI-Meso21) cells. For both the zirconium-89 conjugates, in vivo studies (biodistribution/imaging) were performed at days 1, 3, and 6, from which tissue uptake was determined. Results: Both the conjugates demonstrated a low nanomolar binding affinity for MSLN and >95% immunoreactivity. In all the three tumor types, biodistribution of [89Zr]Zr-DFO-MSLN-mAb resulted in higher tumor uptake(15.88-28-33%ID/g) at all time points compared with [89Zr]Zr-3,2-HOPO-MSLN-mAb(7-13.07%ID/g). [89Zr]Zr-3,2-HOPO-MSLN-mAb femur uptake was always higher than [89Zr]Zr-DFO-MSLN-mAb, and imaging results concurred with the biodistribution studies. Conclusions: Even though the conjugates exhibited a high binding affinity for MSLN, [89Zr]Zr-DFO-MSLN-mAb showed a higher tumor and lower femur uptake than [89Zr]Zr-3,2-HOPO-MSLN-mAb. Nevertheless, [89Zr]Zr-3,2-HOPO-MSLN-mAb could be used to study organ distribution and lesion uptake with the caveat of detecting MSLN-positive bone lesions. Clinical trial (NCT03507452).


Subject(s)
Chelating Agents/therapeutic use , Deferoxamine/therapeutic use , Immunoconjugates/therapeutic use , Maytansine/analogs & derivatives , Radioisotopes/therapeutic use , Zirconium/therapeutic use , Animals , Chelating Agents/pharmacology , Deferoxamine/pharmacology , Female , Humans , Immunoconjugates/pharmacology , Maytansine/pharmacology , Maytansine/therapeutic use , Mesothelin , Mice , Mice, Nude , Radioisotopes/pharmacology , Zirconium/pharmacology
16.
Mol Imaging Biol ; 23(5): 745-755, 2021 10.
Article in English | MEDLINE | ID: mdl-33891265

ABSTRACT

PURPOSE: PSMA overexpression has been associated with aggressive prostate cancer (PCa). However, PSMA PET imaging has revealed highly variable changes in PSMA expression in response to ADT treatment ranging from increases to moderate decreases. To better understand these PSMA responses and potential relationship to progressive PCa, the PET imaging agent, [18F]DCFPyL, was used to assess changes in PSMA expression in response to ADT using genomically characterized LuCaP patient-derived xenograft mouse models (LuCaP-PDXs) which were found to be sensitive to ADT (LuCaP73 and LuCaP136;CS) or resistant (LuCaP167;CR). METHODS: [18F]DCFPyL (2-(3-{1-carboxy-5-[(6-[18F]fluoro-pyridine-3-carbonyl)-amino]-pentyl}-ureido)-pentanedioic acid) was used to assess PSMA in vitro (saturation assays) in LuCaP tumor membrane homogenates and in vivo (imaging/biodistribution) in LuCaP-PDXs. Control and ADT-treated LuCaPs were imaged before ADT (0 days) and 2-, 7-, 14-, and 21-days post-ADT from which tumor:muscle ratios (T:Ms) were determined and concurrently tumor volumes were measured (caliper). After the 21-day imaging, biodistributions and histologic/genomic (PSMA, AR) analysis were done. RESULTS: [18F]DCFPyL exhibited high affinity for PSMA and distinguished different levels of PSMA in LuCaP tumors. Post-ADT CS LuCaP73 and LuCaP136 tumor volumes significantly decreased at day 7 or 14 respectively vs controls, whereas the CR LuCaP167 tumor volumes were minimally changed. [18F]DCFPyL imaging T:Ms were increased 3-5-fold in treated LuCaP73 tumors vs controls, while treated LuCaP136 T:Ms remained unchanged which was confirmed by day 21 biodistribution results. For treated LuCaP167, T:Ms were decreased (~ 45 %) vs controls but due to low T:M values (<2) may not be indicative of PSMA level changes. LuCaP73 tumor PSMA histologic/genomic results were comparable to imaging/biodistribution results, whereas the results for other tumor types varied. CONCLUSION: Tumor responses to ADT varied from sensitive to resistant among these LuCaP PDXs, while only the high PSMA expressing LuCaP model exhibited an increase in PSMA levels in response to ADT. These models may be useful in understanding the clinical relevance of PSMA PET responses to ADT and potentially the relationship to disease progression as it may relate to the genomic signature.


Subject(s)
Androgen Antagonists/therapeutic use , Lysine/analogs & derivatives , Positron-Emission Tomography/methods , Prostate-Specific Antigen , Prostatic Neoplasms , Urea/analogs & derivatives , Animals , Antineoplastic Agents, Hormonal/therapeutic use , Cell Line, Tumor , Disease Models, Animal , Humans , Lysine/administration & dosage , Lysine/metabolism , Lysine/pharmacokinetics , Male , Mice , Prostate-Specific Antigen/analysis , Prostate-Specific Antigen/chemistry , Prostate-Specific Antigen/metabolism , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/metabolism , Urea/administration & dosage , Urea/metabolism , Urea/pharmacokinetics , Xenograft Model Antitumor Assays
17.
J Fungi (Basel) ; 8(1)2021 Dec 28.
Article in English | MEDLINE | ID: mdl-35049965

ABSTRACT

Despite increasing associated mortality and morbidity, the diagnosis of fungal infections, especially with Aspergillus fumigatus (A. fumigatus), remains challenging. Based on known ability of Aspergillus species to utilize sorbitol, we evaluated 2-[18F]-fluorodeoxysorbitol (FDS), a recently described Enterobacterales imaging ligand, in animal models of A. fumigatus infection, in comparison with 2-[18F]-fluorodeoxyglucose (FDG). In vitro assays showed slightly higher 3H-sorbitol uptake by live compared with heat-killed A. fumigatus. However, this was 10.6-fold lower than E. coli uptake. FDS positron emission tomography (PET) imaging of A. fumigatus pneumonia showed low uptake in infected lungs compared with FDG (0.290 ± 0.030 vs. 8.416 ± 0.964 %ID/mL). This uptake was higher than controls (0.098 ± 0.008 %ID/mL) and minimally higher than lung inflammation (0.167 ± 0.007 %ID/mL). In the myositis models, FDS uptake was highest in live E. coli infections. Uptake was low in A. fumigatus myositis model and only slightly higher in live compared with the heat-killed side. In conclusion, we found low uptake of 3H-sorbitol and FDS by A. fumigatus cultures and infection models compared with E. coli, likely due to the need for induction of sorbitol dehydrogenase by sorbitol. Our findings do not support FDS as an Aspergillus imaging agent. At this point, FDS remains more selective for imaging Gram-negative Enterobacterales.

18.
Molecules ; 25(17)2020 Aug 27.
Article in English | MEDLINE | ID: mdl-32867358

ABSTRACT

The C-X-C motif chemokine receptor 4 (CXCR4) is a seven-transmembrane G protein-coupled receptor that is overexpressed in numerous diseases, particularly in various cancers and is a powerful chemokine, attracting cells to the bone marrow niche. Therefore, CXCR4 is an attractive target for imaging and therapeutic purposes. The goal of this study is to develop an efficient, reproducible, and straightforward method to prepare a fluorine-18 labeled CXCR4 ligand. 6-[18F]Fluoronicotinic acid-2,3,5,6-tetrafluorophenyl ester (6-[18F]FPy-TFP) and nicotinic acid N-hydroxysuccinimide ester (6-[18F]SFPy) have been prepared using 'fluorination on the Sep-Pak' method. Conjugation of 6-[18F]SFPy or 6-[18F]FPy-TFP with the alpha-amino group at the N terminus of the protected T140 precursor followed by deprotection, yielded the final product 6-[18F]FPy-T140. The overall radiochemical yields were 6-17% (n = 15, decay-corrected) in a 90-min radiolabeling time with a radiochemical purity >99%. 6-[18F]FPy-T140 exhibited high specific binding and nanomolar affinity for CXCR4 in vitro, indicating that the biological activity of the peptide was preserved. For the first time, [18F]SFPy has been prepared using 'fluorination on the Sep-Pak' method that allows rapid automated synthesis of 6-[18F]FPy-T140. In addition to increased synthetic efficiency, this construct binds with CXCR4 in high affinity and may have potential as an in vivo positron emission tomography (PET) imaging agent. This radiosynthesis method should encourage wider use of this PET agent to quantify CXCR4 in both research and clinical settings.


Subject(s)
Radiopharmaceuticals , Receptors, CXCR4 , Esters/chemistry , Fluorine Radioisotopes , HeLa Cells , Humans , Ligands , Neoplasms/diagnosis , Neoplasms/metabolism , Radiopharmaceuticals/chemical synthesis , Radiopharmaceuticals/chemistry , Receptors, CXCR4/analysis , Receptors, CXCR4/antagonists & inhibitors , Succinimides/chemistry
19.
Stem Cells Transl Med ; 9(10): 1203-1217, 2020 10.
Article in English | MEDLINE | ID: mdl-32700830

ABSTRACT

Techniques that enable longitudinal tracking of cell fate after myocardial delivery are imperative for optimizing the efficacy of cell-based cardiac therapies. However, these approaches have been underutilized in preclinical models and clinical trials, and there is considerable demand for site-specific strategies achieving long-term expression of reporter genes compatible with safe noninvasive imaging. In this study, the rhesus sodium/iodide symporter (NIS) gene was incorporated into rhesus macaque induced pluripotent stem cells (RhiPSCs) via CRISPR/Cas9. Cardiomyocytes derived from NIS-RhiPSCs (NIS-RhiPSC-CMs) exhibited overall similar morphological and electrophysiological characteristics compared to parental control RhiPSC-CMs at baseline and with exposure to physiological levels of sodium iodide. Mice were injected intramyocardially with 2 million NIS-RhiPSC-CMs immediately following myocardial infarction, and serial positron emission tomography/computed tomography was performed with 18 F-tetrafluoroborate to monitor transplanted cells in vivo. NIS-RhiPSC-CMs could be detected until study conclusion at 8 to 10 weeks postinjection. This NIS-based molecular imaging platform, with optimal safety and sensitivity characteristics, is primed for translation into large-animal preclinical models and clinical trials.


Subject(s)
CRISPR-Cas Systems/genetics , Induced Pluripotent Stem Cells/metabolism , Myocytes, Cardiac/metabolism , Symporters/genetics , Animals , Cell Differentiation , Disease Models, Animal , Humans , Mice , Transfection
20.
Cancer Biother Radiopharm ; 35(4): 284-291, 2020 May.
Article in English | MEDLINE | ID: mdl-32074455

ABSTRACT

Background: Prostate-specific membrane antigen (PSMA) has emerged as a promising target for developing radionuclide therapy (RNT) in prostate cancer; however, accumulation of PSMA-RNT in salivary glands can result in irreversible xerostomia. Methods to prevent PSMA-RNT-related xerostomia could be clinically useful; however, little is known about PSMA expression in salivary glands of preclinical animal models. Using [18F]DCFPyL autoradiography/biodistribution, PSMA expression levels were determined in salivary glands of various preclinical monkey and rodent species and compared with humans. Methods: Binding affinities (Kd) and PSMA levels (Bmax) were determined by in vitro [18F]DCFPyL autoradiography studies. In vivo rodent tissue uptakes (%ID/g) were determined from [18F]DCFPyL biodistributions. Results: [18F]DCFPyL exhibited low nanomolar Kd for submandibular gland (SMG) PSMA across all the species. PSMA levels in human SMG (Bmax = 60.91 nM) were approximately two-fold lower compared with baboon SMG but were two- to three-fold higher than SMG PSMA levels of cynomolgus and rhesus. Rodents had the lowest SMG PSMA levels, with the mouse being 10-fold higher than the rat. In vivo rodent biodistribution studies confirmed these results. Conclusions: SMG of monkeys exhibited comparable PSMA expression to human SMG whereas rodents were lower. However, the results suggest that mice are relatively a better small animal preclinical model than rats for PSMA salivary gland studies.


Subject(s)
Antigens, Surface/metabolism , Glutamate Carboxypeptidase II/metabolism , Salivary Glands/chemistry , Animals , Haplorhini , Humans , Male , Mice , Rats , Rodentia
SELECTION OF CITATIONS
SEARCH DETAIL
...