Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Sci Total Environ ; 856(Pt 1): 159065, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36181824

ABSTRACT

Hydropeaking, by artificially generated flow peaks, influences hydro-sedimentary dynamics on rivers and, consequently, affects bed material entrainment and transport. This study examines the onset of motion of sediment particles in four sections of a Pyrenean gravel-to-cobble bed river exposed to frequent hydropeaking (once per day, on average). Five criteria of particle entrainment have been used to assess the prediction of the initiation of grain motion at-a-section scale. Theoretical entrainment conditions were validated using real observations of mobility by means of tracers. It was found that the maximum flow discharged by the hydropower plant mostly affects the furthest downstream section, located almost 17 km downstream, in which the finer fractions of the bed are entrained. The mobile grain sizes include up to coarse gravels (≈ 30 mm). Differences in sediment supply (imposed by tributaries), the value of the bed slope and the structure of the coarse surface layer decisively control the downstream variability of incipient particle motion between sections. Results from a 17 km study segment indicated that hydropeaking generate partial transport, that is, a partially size-selective transport that occurs downstream from the hydropower plant and winnows the sand and small gravel further downstream, increasing armouring and depleting fine sediments.


Subject(s)
Cognition , Edible Grain , Rivers , Sand , Geologic Sediments
2.
Sci Total Environ ; 794: 148686, 2021 Nov 10.
Article in English | MEDLINE | ID: mdl-34218154

ABSTRACT

A major programme of dam building is underway in many of the world's tropical countries. This raises the question of whether existing research is sufficient to fully understand the impacts of dams on tropical river systems. This paper provides a systematic review of what is known about the impacts of dams on river flows, sediment dynamics and geomorphic processes in tropical rivers. The review was conducted using the SCOPUS® and Web of Science® databases, with papers analysed to look for temporal and geographic patterns in published work, assess the approaches used to help understand dam impacts, and assess the nature and magnitude of impacts on the flow regimes and geomorphology ('hydromorphology') of tropical rivers. As part of the review, a meta-analysis was used to compare key impacts across different climate regions. Although research on tropical rivers remains scarce, existing work is sufficient to allow us to draw some very broad, general conclusions about the nature of hydromorphic change: tropical dams have resulted in reductions in flow variability, lower flood peaks, reductions in sediment supply and loads, and complex geomorphic adjustments that include both channel incision and aggradation at different times and downstream distances. At this general level, impacts are consistent with those observed in other climate regions. However, studies are too few and variable in their focus to determine whether some of the more specific aspects of change observed in tropical rivers (e.g. time to reach a new, adjusted state, and downstream recovery distance) differ consistently from those in other regions. The review helps stress the need for research that incorporates before-after comparisons of flow and geomorphic conditions, and for the wider application of tools available now for assessing hydromorphic change. Very few studies have considered hydromorphic processes when designing flow operational policies for tropical dams.


Subject(s)
Ecosystem , Rivers , Floods
3.
Sci Total Environ ; 745: 140952, 2020 Nov 25.
Article in English | MEDLINE | ID: mdl-32721617

ABSTRACT

Hydropeaking, through artificially generated flow peaks, affects hydro-sedimentary dynamics on rivers. The frequency and magnitude of such artificial flow pulses impact sedimentary process and, inevitably, affects bed-material entrainment. This study analyses the entrainment of particles in six sections of a Pyrenean river under frequent hydropeaking. Three equations of particle entrainment with contrasting behaviours, validated for particle mobility from tracer data, have been used to predict the initiation of motion in each section. Results show that the peak discharge generated by the hydropower station mostly affects the section immediately downstream from the hydropower plant, where the finer fractions of the bed are mobilised. The mobile grain sizes include fine to medium gravels (< 20mm). Channel geometry and higher slopes also have an effect on particle entrainment. Entrainment of the finer size fractions of the bed is termed partial transport, i.e. a partially size-selective transport that occurs downstream from the hydropower station and winnows the sand and small gravel further downstream.

4.
PLoS One ; 14(6): e0218822, 2019.
Article in English | MEDLINE | ID: mdl-31233544

ABSTRACT

Sediment flushing can tackle reservoirs siltation and improve sediment flux through dammed rivers. However, the increase of the sediment loading below the dam can trigger a suite of undesired ecological effects in the downstream river reaches. To limit these drawbacks, sediment flushing can be controlled, by jointly regulating the sediment concentration of the evacuated water and the streamflow in the downstream channel. In this paper, we report on ten controlled sediment flushing operations (CSFOs), carried out between 2006 and 2012 in the central Italian Alps, at four hydropower reservoirs. These CSFOs displayed specific common traits: (i) Limits were set by the local environmental authorities concerning the allowable suspended sediment concentration. (ii) Reservoirs were fully drawn-down, earth-moving equipment was used to dislodge sediment, and the downstream water discharge was increased, compared to baseflow, by operating upstream intakes. (iii) Abiotic and biotic measurements in selected downstream reaches (before, during, and after the CSFOs) represented an integral part of the operations. In contrast, significant differences characterize the hydropower facilities (elevation and storage of reservoirs, in particular) as well as the basic CSFOs parameters (i.e., season, duration, mass and grain-size of the evacuated sediment, suspended sediment concentration). The macroinvertebrate assemblages resulted noticeably impacted by the CSFOs. In the short term, a significant density drop was observed, slightly influenced by the extent of the perturbation. In contrast, the latter appeared to control the assemblages contraction in terms of richness, according to the different sensitivity to sediment stress of the different taxa. The time employed to recover pre-CSFO standard ranged from few months to just under one year, and the related patterns would seem mostly correlated to the flushing season and to further site specificities. The density of trout populations was impacted as well, thus suggesting the adoption of mitigating strategies as removal by electrofishing before, and repopulation after the CSFO.


Subject(s)
Geologic Sediments , Rivers , Water Resources , Animals , Environmental Monitoring , Hydrology , Italy , Power Plants , Trout , Water Movements
6.
Sci Total Environ ; 630: 1608-1618, 2018 Jul 15.
Article in English | MEDLINE | ID: mdl-29554777

ABSTRACT

Multiple abiotic stressors affect the ecological status of water bodies. The status of waterbodies in the Ebro catchment (NE Spain) is evaluated using the biological quality elements (BQEs) of diatoms, invertebrates and macrophytes. The multi-stressor influence on the three BQEs was evaluated using the monitoring dataset available from the catchment water authority. Nutrient concentrations, especially total phosphorus (TP), affected most of the analyzed BQEs, while changes in mean discharge, water temperature, or river morphology did not show significant influences. Linear statistical models were used to evaluate the change of water bodies' ecological status under different combinations of future socioeconomic and climate scenarios. Changes in land use, rainfall, water temperature, mean discharge, TP and nitrate concentrations were modeled according to the future scenarios. These revealed an evolution of the abiotic stressors that could lead to a general decrease in the ecosystem quality of water bodies within the Ebro catchment. This deterioration was especially evidenced on the diatoms and invertebrate biological indices, mainly because of the foreseen increase in TP concentrations. Water bodies located in the headwaters were seen as the most sensitive to future changes.

7.
Sci Total Environ ; 580: 1453-1459, 2017 Feb 15.
Article in English | MEDLINE | ID: mdl-28027801

ABSTRACT

Here we provide the first evidence of long term reductions in flow in temporary streams on the Mediterranean island of Mallorca and use a simple metric of the degree of water permanence (the number of days with water) to highlight the implications of flow change for aquatic invertebrate diversity. Analysis of a 33year data set for 13 streams on the island yielded evidence of consistent downward trends in water permanence, particularly in spring and summer. Data from 27 relatively undisturbed mountain streams indicate that the diversity of benthic invertebrates in temporary streams across the island is directly related to water permanence. Streams with lower values of water permanence support few species overall and have less abundant invertebrate assemblages; the abundance and species richness of sensitive mayfly, stonefly and caddisfly taxonomic groups is also reduced in streams with lower water permanence. Although developed using spatial data, these flow-invertebrate relationships suggest that future reductions in water permanence may lead to reduced diversity. We argue that the 'number of days with water' is a simple but ecologically-relevant metric of water permanence that can be used effectively to monitor change in threatened temporary streams worldwide.


Subject(s)
Biodiversity , Insecta/classification , Rivers , Water Movements , Animals , Islands , Seasons , Spain
8.
Sci Total Environ ; 572: 1033-1046, 2016 Dec 01.
Article in English | MEDLINE | ID: mdl-27522284

ABSTRACT

Biofilm acts stabilising river-bed sediments, interfering with particle entrainment and, consequently, preventing bed disturbance. In this paper we present the results of a series of experiments carried out in indoor channels, aimed to understand biofilm alteration of bed material motion and topographic changes in stream channels. We analysed the erosion patterns and bedload rates in non-cohesive sediments in channels colonised by biofilms and compared them to biofilm-free others. All the channels had the same conditions of light irradiance, temperature, slope, and particle size (sand). Discharge and water surface slope were modified to create a range of hydraulic conditions, with pairs of colonised and non-colonised channels subjected to the same flows. We observed that biofilm slightly modified bed roughness and flow hydraulics, but that highly influenced bed disturbance. Biofilm caused bed scour to occur in patches unevenly distributed along the channel length, as a result of localised weaknesses of the biofilm. Once biofilm was ripped up it was transported in chunks, and sand grains were observed attached to these chunks. In non-colonised sediments the erosion was more homogeneous and the formation and movement of bedforms were observed. On average, bedload rates were 5 times lower when biofilm was present. Overall, the protective effect of the biofilm prevented generalised erosion of the channel and delayed the entrainment and transport of sand grains. Results emphasised the important role of biofilm in the incipient motion of bed-material in stream channels; this role may affect the magnitude and frequency of subsequent river bed processes, notably the onset of bedload and associated channel morpho-dynamics.


Subject(s)
Biofilms , Geologic Sediments/analysis , Hydrodynamics , Rivers , Spain
9.
Sci Total Environ ; 540: 133-43, 2016 Jan 01.
Article in English | MEDLINE | ID: mdl-26271999

ABSTRACT

Regulation alters the characteristics of rivers by transforming parts of them into lakes, affecting their hydrology and also the physical, chemical, and biological characteristics and dynamics. Reservoirs have proven to be very effective retaining particulate materials, thereby avoiding the downstream transport of suspended sediment and the chemical substances associated with it (e.g. Carbon, C, or Nitrogen, N). The study of fluvial transport of C and N is of great interest since river load represents a major link to the global C and N cycles. Moreover, reservoirs are the most important sinks for organic carbon among inland waters and have a potential significance as nitrogen sinks. In this respect, this paper investigates the effects of a Pyrenean reservoir on the runoff, suspended sediment, C and N derived from the highly active Ésera and Isábena rivers. Key findings indicate that the reservoir causes a considerable impact on the Ésera-Isábena river fluxes, reducing them dramatically as almost all the inputs are retained within the reservoir. Despite the very dry study year (2011-2012), it can be calculated that almost 300,000 t of suspended sediment were deposited into the Barasona Reservoir, from which more than 16,000 were C (i.e. 2200 t as organic C) and 222 t were N. These values may not be seen as remarkable in a wider global context but, assuming that around 30 h m(3) of sediment are currently stored in the reservoir, figures would increase up to ca. 2.6×10(6) t of C (i.e. 360,000 t of organic C) and 35,000 t of N. Nevertheless, these values are indicative and should be treated with caution as there is incomplete understanding of all the processes which affect C and N. Further investigation to establish a more complete picture of C and N yields and budgets by monitoring the different processes involved is essential.

10.
Environ Sci Pollut Res Int ; 19(4): 918-33, 2012 May.
Article in English | MEDLINE | ID: mdl-22544550

ABSTRACT

INTRODUCTION: The Consolider-Ingenio 2010 project SCARCE, with the full title "Assessing and predicting effects on water quantity and quality in Iberian Rivers caused by global change" aims to examine and predict the relevance of global change on water availability, water quality, and ecosystem services in Mediterranean river basins of the Iberian Peninsula, as well as their socio-economic impacts. Starting in December 2009, it brought together a multidisciplinary team of 11 partner Spanish institutions, as well as the active involvement of water authorities, river basin managers, and other relevant agents as stakeholders. METHODS: The study areas are the Llobregat, Ebro, Jucar, and Guadalquivir river basins. These basins have been included in previous studies and projects, the majority of whom considered some of the aspects included in SCARCE but individually. Historical data will be used as a starting point of the project but also to obtain longer time series. The main added value of SCARCE project is the inclusion of scientific disciplines ranging from hydrology, geomorphology, ecology, chemistry, and ecotoxicology, to engineering, modeling, and economy, in an unprecedented effort in the Mediterranean area. The project performs data mining, field, and lab research as well as modeling and upscaling of the findings to apply them to the entire river basin. RESULTS: Scales ranging from the laboratory to river basins are addressed with the potential to help improve river basin management. The project emphasizes, thus, linking basic research and management practices in a single framework. In fact, one of the main objectives of SCARCE is to act as a bridge between the scientific and the management and to transform research results on management keys and tools for improving the River Basin Management Plans. Here, we outline the general structure of the project and the activities conducted within the ten Work Packages of SCARCE.


Subject(s)
Climate Change , Human Activities , Rivers , Conservation of Natural Resources , Ecosystem , Environment , Geologic Sediments , Humans , Research Design , Spain , Water Quality
11.
Integr Environ Assess Manag ; 7(2): 256-68, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21442735

ABSTRACT

Sediment flows naturally through the drainage network, from source areas to deposition zones. Sedimentary disequilibrium in rivers and coastlines is related to the imbalance within the fluvial system caused mostly by dams, instream mining, and changes in land use. This phenomenon is also responsible for ecological perturbations in rivers and streams. A broad need exists to establish comprehensive management strategies (soft measures) that would go beyond site-specific engineering practices (technical measures) typically taken to solve particular problems. Long-term programs are also required to monitor sediment transport in river basins, in order to assess the magnitude and variability of sediment transfer and potential deficits. This paper shows examples of rivers with important sediment disequilibrium in the Ebro and adjacent basins. These basins, like most in the Iberian Peninsula, experience sediment discontinuity in the catchment-river-coast system. Reservoir siltation is the main quantitative issue. Land use change and especially gravel mining downstream from dams accentuate the process. We also present and discuss recent developments on water and sediment management undertaken to improve the morphosedimentary dynamics of rivers.


Subject(s)
Environmental Monitoring/methods , Geologic Sediments/analysis , Mining , Rivers , Spain
12.
Oncol. (Quito) ; (4): 77-81, ene.-jun. 1995. ilus
Article in Spanish | LILACS | ID: lil-235295

ABSTRACT

Presenta el caso de una paciente de 44 años de edad que consultó al Hospital Oncológico de SOLCA, con dolor torácico y estudios radiológicos de tórax que revelaron una tumoración localizada en el mediastino posterior, en la región para vertebral izquierda. Fue sometida a una toracotomía exploradora, y excéresis de la misma; cuyo resultado histopatológico fue de un schwannoma benigno. Se analiza los aspectos generales de esta patología haciendo una breve revisión bibliográfica...


Subject(s)
Humans , Mediastinum , Neurilemmoma , Ecuador , Hospitals , Patients
SELECTION OF CITATIONS
SEARCH DETAIL
...