Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
2.
Cancer Gene Ther ; 31(3): 376-386, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38086993

ABSTRACT

Endoplasmic reticulum (ER) stress, prompted by the accumulation of misfolded or unfolded proteins, triggers the activation of the unfolded protein response (UPR) pathway to restore ER homeostasis. This stress response is implicated in the development of hepatocellular carcinoma (HCC). A biallelic mutation in SPRTN is currently the only known single-gene mutation implicated in the early onset of HCC. However, the exact mechanism linking SPRTN mutations to HCC remains unclear. In our study, we analyzed SPRTN and UPR in 21 human HCC tissue samples using RT-qPCR, immunoblot, and immunohistochemistry. We found alterations in the expression levels of SPRTN and UPR-related genes and proteins in HCC samples. The impact of SPRTN on the ER stress response was assessed in SPRTN-depleted HepG2 cells through RNA sequencing, pull-down assay, comet assay, and mitotic index calculation. We demonstrated that SPRTN interacts with the UPR sensor GRP78. Furthermore, we observed a decrease in SPRTN levels during ER stress, and increased sensitivity to ER stress in SPRTN-depleted cells. These findings suggest an essential role for SPRTN in the ER stress response and provide new insights into HCC pathogenesis. This newly discovered function of SPRTN could significantly enhance our understanding and treatment of HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/pathology , Endoplasmic Reticulum Chaperone BiP , Endoplasmic Reticulum Stress/genetics , Liver Neoplasms/pathology , Unfolded Protein Response
3.
Prep Biochem Biotechnol ; 53(9): 1067-1080, 2023 Oct.
Article in English | MEDLINE | ID: mdl-36645251

ABSTRACT

Histones are an essential part of nucleosomes that regulate chromatin structure and function. Histone exchanges and modifications represent a scaffold for DNA transcription, repair, and replication. Studying histones and histone code is an important and fast-developing branch of epigenetic science. Here we propose a fast, efficient, and versatile assay for nucleosomal histone isolation from mammalian cells, without the use of acids or high salt solutions which are common for other histone isolation techniques. All components used in the protocol are common and inexpensive laboratory chemicals. The protocol has been evaluated on six commonly used cell lines and two animal tissue samples. The mild extraction conditions preserve delicate histone epigenetic changes, allowing its downstream analyses. We have demonstrated the assays' successful application during changes in the transcriptional activity of histone genes, cell cycle transitions, and DNA-damaging conditions. Histone fractions, obtained by the protocol, can be used for further applications, such as electrophoresis, immunoblot, and mass spectrometry. Therefore, the new proposed nucleosomal histone isolation method is sensitive, specific, and suitable for downstream applications of various kinds.


Subject(s)
Histones , Nucleosomes , Animals , Histones/chemistry , Histones/genetics , Histones/metabolism , Cost-Benefit Analysis , DNA , Cell Cycle , Mammals/genetics , Mammals/metabolism
4.
Nucleic Acids Res ; 51(6): e35, 2023 04 11.
Article in English | MEDLINE | ID: mdl-36718861

ABSTRACT

DNA-protein crosslinks (DPCs), formed by the covalent conjugation of proteins to DNA, are toxic lesions that interfere with DNA metabolic processing and transcription. The development of an accurate biochemical assay for DPC isolation is a priority for the mechanistic understanding of their repair. Here, we propose the STAR assay for the direct quantification of DPCs, sensitive to physiologically relevant treatment conditions. Implementing the STAR assay revealed the formation of small cross-linked peptides on DNA, created by the proteolytic degradation of DPCs by SPRTN. The initial proteolytic degradation of DPCs is required for the downstream activation of DNA repair, which is mediated through the phosphorylation of H2Ax. This leads to the accumulation of DNA repair factors on chromatin and the subsequent complete removal of the cross-linked peptides. These results confirmed that the repair of DPCs is a two-step process, starting with proteolytic resection by SPRTN, followed by the repair of the underlying damage to the DNA.


Subject(s)
DNA Damage , DNA-Binding Proteins , DNA-Binding Proteins/genetics , DNA/genetics , DNA/metabolism , DNA Repair , Proteolysis , Peptide Hydrolases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...