Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Proc Natl Acad Sci U S A ; 121(12): e2309326121, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38483986

ABSTRACT

Hsp90s are ATP-dependent chaperones that collaborate with co-chaperones and Hsp70s to remodel client proteins. Grp94 is the ER Hsp90 homolog essential for folding multiple secretory and membrane proteins. Grp94 interacts with the ER Hsp70, BiP, although the collaboration of the ER chaperones in protein remodeling is not well understood. Grp94 undergoes large-scale conformational changes that are coupled to chaperone activity. Within Grp94, a region called the pre-N domain suppresses ATP hydrolysis and conformational transitions to the active chaperone conformation. In this work, we combined in vivo and in vitro functional assays and structural studies to characterize the chaperone mechanism of Grp94. We show that Grp94 directly collaborates with the BiP chaperone system to fold clients. Grp94's pre-N domain is not necessary for Grp94-client interactions. The folding of some Grp94 clients does not require direct interactions between Grp94 and BiP in vivo, suggesting that the canonical collaboration may not be a general chaperone mechanism for Grp94. The BiP co-chaperone DnaJB11 promotes the interaction between Grp94 and BiP, relieving the pre-N domain suppression of Grp94's ATP hydrolysis activity. In structural studies, we find that ATP binding by Grp94 alters the ATP lid conformation, while BiP binding stabilizes a partially closed Grp94 intermediate. Together, BiP and ATP push Grp94 into the active closed conformation for client folding. We also find that nucleotide binding reduces Grp94's affinity for clients, which is important for productive client folding. Alteration of client affinity by nucleotide binding may be a conserved chaperone mechanism for a subset of ER chaperones.


Subject(s)
HSP70 Heat-Shock Proteins , Protein Folding , Humans , HSP70 Heat-Shock Proteins/metabolism , Membrane Proteins/metabolism , Molecular Chaperones/metabolism , Nucleotides , Adenosine Triphosphate/metabolism
2.
Biochem Biophys Res Commun ; 659: 34-39, 2023 06 04.
Article in English | MEDLINE | ID: mdl-37031592

ABSTRACT

KCNQ1, the major component of the slow-delayed rectifier potassium channel, is responsible for repolarization of cardiac action potential. Mutations in this channel can lead to a variety of diseases, most notably long QT syndrome. It is currently unknown how many of these mutations change channel function and structure on a molecular level. Since tetramerization is key to proper function and structure of the channel, it is likely that mutations modify the stability of KCNQ1 oligomers. Presently, the C-terminal domain of KCNQ1 has been noted as the driving force for oligomer formation. However, truncated versions of this protein lacking the C-terminal domain still tetramerize. Therefore, we explored the role of native cysteine residues in a truncated construct of human KCNQ1, amino acids 100-370, by blocking potential interactions of cysteines with a nitroxide based spin label. Mobility of the spin labels was investigated with continuous wave electron paramagnetic resonance (CW-EPR) spectroscopy. The oligomerization state was examined by gel electrophoresis. The data provide information on tetramerization of human KCNQ1 without the C-terminal domain. Specifically, how blocking the side chains of native cysteines residues reduces oligomerization. A better understanding of tetramer formation could provide improved understanding of the molecular etiology of long QT syndrome and other diseases related to KCNQ1.


Subject(s)
Long QT Syndrome , Potassium Channels, Voltage-Gated , Humans , Potassium Channels, Voltage-Gated/metabolism , KCNQ1 Potassium Channel/genetics , KCNQ1 Potassium Channel/metabolism , Cysteine/genetics , Mutation , Long QT Syndrome/genetics , Long QT Syndrome/metabolism
3.
Biochim Biophys Acta Biomembr ; 1864(11): 184010, 2022 11 01.
Article in English | MEDLINE | ID: mdl-35870481

ABSTRACT

KCNQ1 (Kv7.1 or KvLQT1) is a voltage-gated potassium ion channel that is involved in the ventricular repolarization following an action potential in the heart. It forms a complex with KCNE1 in the heart and is the pore forming subunit of slow delayed rectifier potassium current (Iks). Mutations in KCNQ1, leading to a dysfunctional channel or loss of activity have been implicated in a cardiac disorder, long QT syndrome. In this study, we report the overexpression, purification, biochemical characterization of human KCNQ1100-370, and lipid bilayer dynamics upon interaction with KCNQ1100-370. The recombinant human KCNQ1 was expressed in Escherichia coli and purified into n-dodecylphosphocholine (DPC) micelles. The purified KCNQ1100-370 was biochemically characterized by SDS-PAGE electrophoresis, western blot and nano-LC-MS/MS to confirm the identity of the protein. Circular dichroism (CD) spectroscopy was utilized to confirm the secondary structure of purified protein in vesicles. Furthermore, 31P and 2H solid-state NMR spectroscopy in DPPC/POPC/POPG vesicles (MLVs) indicated a direct interaction between KCNQ100-370 and the phospholipid head groups. Finally, a visual inspection of KCNQ1100-370 incorporated into MLVs was confirmed by transmission electron microscopy (TEM). The findings of this study provide avenues for future structural studies of the human KCNQ1 ion channel to have an in depth understanding of its structure-function relationship.


Subject(s)
Long QT Syndrome , Potassium Channels, Voltage-Gated , Humans , KCNQ1 Potassium Channel/metabolism , Potassium/metabolism , Potassium Channels , Potassium Channels, Voltage-Gated/metabolism , Tandem Mass Spectrometry
4.
Case Rep Womens Health ; 34: e00410, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35479418

ABSTRACT

Uterine arteriovenous malformation/arteriovenous fistula is a rare, but potentially life-threatening, cause of severe hemorrhage. A case of uterine arteriovenous malformation/fistula causing severe hemorrhage following a first-trimester aspiration abortion procedure in a patient with a history of prior cesarean sections is presented. In this case, the patient was promptly diagnosed and effectively treated with uterine artery embolization. Consideration of uterine arteriovenous malformation/fistula in the differential diagnosis of severe hemorrhage following first-trimester aspiration abortion, especially in women with risk factors, can lead to timely recognition and appropriate treatment.

5.
J Biol Chem ; 298(5): 101894, 2022 05.
Article in English | MEDLINE | ID: mdl-35378129

ABSTRACT

Extensive portions of the human genome have unknown function, including those derived from transposable elements. One such element, the DNA transposon Hsmar1, entered the primate lineage approximately 50 million years ago leaving behind terminal inverted repeat (TIR) sequences and a single intact copy of the Hsmar1 transposase, which retains its ancestral TIR-DNA-binding activity, and is fused with a lysine methyltransferase SET domain to constitute the chimeric SETMAR gene. Here, we provide a structural basis for recognition of TIRs by SETMAR and investigate the function of SETMAR through genome-wide approaches. As elucidated in our 2.37 Å crystal structure, SETMAR forms a dimeric complex with each DNA-binding domain bound specifically to TIR-DNA through the formation of 32 hydrogen bonds. We found that SETMAR recognizes primarily TIR sequences (∼5000 sites) within the human genome as assessed by chromatin immunoprecipitation sequencing analysis. In two SETMAR KO cell lines, we identified 163 shared differentially expressed genes and 233 shared alternative splicing events. Among these genes are several pre-mRNA-splicing factors, transcription factors, and genes associated with neuronal function, and one alternatively spliced primate-specific gene, TMEM14B, which has been identified as a marker for neocortex expansion associated with brain evolution. Taken together, our results suggest a model in which SETMAR impacts differential expression and alternative splicing of genes associated with transcription and neuronal function, potentially through both its TIR-specific DNA-binding and lysine methyltransferase activities, consistent with a role for SETMAR in simian primate development.


Subject(s)
Genome, Human , Histone-Lysine N-Methyltransferase/genetics , Primates/genetics , Animals , Biological Evolution , Brain/metabolism , DNA Transposable Elements/genetics , Genome-Wide Association Study , Histone-Lysine N-Methyltransferase/metabolism , Humans , Inverted Repeat Sequences , Lysine/genetics , Primates/metabolism , Transposases/chemistry
6.
Biochem Mol Biol Educ ; 49(1): 94-107, 2021 01.
Article in English | MEDLINE | ID: mdl-33202110

ABSTRACT

Introductory biochemistry courses are often challenging for students because they require the integration of chemistry, biology, physics, math, and physiology knowledge and frameworks to understand and apply a large body of knowledge. This can be complicated by students' persistent misconceptions of fundamental concepts and lack of fluency with the extensive visual and symbolic literacy used in biochemistry. Card sorting tasks and game-based activities have been used to reveal insights into how students are assimilating, organizing, and structuring disciplinary knowledge, and how they are progressing along a continuum from disciplinary novice to expert. In this study, game-based activities and card sorting tasks were used to promote and evaluate students' understanding of fundamental structure-function relationships in biochemistry. Our results suggest that while many markers of expertise increased for both the control and intervention groups over the course of the semester, students involved in the intervention activities tended to move further towards expert-like sorting. This indicates that intentional visual literacy game-based activities have the ability to build underdeveloped skills in undergraduate students.


Subject(s)
Biochemistry/education , Literacy , Curriculum , Humans , Knowledge , Students , Universities
7.
Sci Rep ; 9(1): 15803, 2019 11 01.
Article in English | MEDLINE | ID: mdl-31676795

ABSTRACT

Colorectal cancer (CRC) is the fourth leading cause of cancer-related deaths worldwide. Liver metastasis is the major cause of CRC patient mortality, occurring in 60% patients with no effective therapies. Although studies have indicated the role of miRNAs in CRC, an in-depth miRNA expression analysis is essential to identify clinically relevant miRNAs and understand their potential in targeting liver metastasis. Here we analyzed miRNA expressions in 405 patient tumors from publicly available colorectal cancer genome sequencing project database. Our analyses showed miR-132, miR-378f, miR-605 and miR-1976 to be the most significantly downregulated miRNAs in primary and CRC liver metastatic tissues, and CRC cell lines. Observations in CRC cell lines indicated that ectopic expressions of miR-378f, -605 and -1976 suppress CRC cell proliferation, anchorage independent growth, metastatic potential, and enhance apoptosis. Consistently, CRC patients with higher miR-378f and miR-1976 levels exhibited better survival. Together, our data suggests an anti-tumorigenic role of these miRNAs in CRC and warrant future in vivo evaluation of the molecules for developing biomarkers or novel therapeutic strategies.


Subject(s)
Colorectal Neoplasms/metabolism , Liver Neoplasms/secondary , MicroRNAs/metabolism , Colorectal Neoplasms/pathology , Female , Humans , Liver Neoplasms/genetics , Male
8.
Cells ; 8(5)2019 05 04.
Article in English | MEDLINE | ID: mdl-31060240

ABSTRACT

Telomere dysfunction has been strongly implicated in the initiation of genomic instability and is suspected to be an early event in the carcinogenesis of human solid tumors. Recent findings have established the presence of telomere fusions in human breast and prostate malignancies; however, the onset of this genomic instability mechanism during progression of other solid cancers is not well understood. Herein, we explored telomere dynamics in patient-derived epithelial ovarian cancers (OC), a malignancy characterized by multiple distinct subtypes, extensive molecular heterogeneity, and widespread genomic instability. We discovered a high frequency of telomere fusions in ovarian tumor tissues; however, limited telomere fusions were detected in normal adjacent tissues or benign ovarian samples. In addition, we found relatively high levels of both telomerase activity and hTERT expression, along with anaphase bridges in tumor tissues, which were notably absent in adjacent normal ovarian tissues and benign lesions. These results suggest that telomere dysfunction may occur early in ovarian carcinogenesis and, importantly, that it may play a critical role in the initiation and progression of the disease. Recognizing telomere dysfunction as a pervasive feature of this heterogeneous malignancy may facilitate the future development of novel diagnostic tools and improved methods of disease monitoring and treatment.


Subject(s)
Ovarian Neoplasms/genetics , Telomere/pathology , Adult , Aged , Aged, 80 and over , Anaphase , Female , Humans , Middle Aged , Ovarian Neoplasms/pathology , Telomerase/metabolism
9.
Science ; 363(6429): 884-887, 2019 02 22.
Article in English | MEDLINE | ID: mdl-30792304

ABSTRACT

We report DNA- and RNA-like systems built from eight nucleotide "letters" (hence the name "hachimoji") that form four orthogonal pairs. These synthetic systems meet the structural requirements needed to support Darwinian evolution, including a polyelectrolyte backbone, predictable thermodynamic stability, and stereoregular building blocks that fit a Schrödinger aperiodic crystal. Measured thermodynamic parameters predict the stability of hachimoji duplexes, allowing hachimoji DNA to increase the information density of natural terran DNA. Three crystal structures show that the synthetic building blocks do not perturb the aperiodic crystal seen in the DNA double helix. Hachimoji DNA was then transcribed to give hachimoji RNA in the form of a functioning fluorescent hachimoji aptamer. These results expand the scope of molecular structures that might support life, including life throughout the cosmos.


Subject(s)
Base Pairing , DNA/chemistry , DNA/genetics , Nucleotides/chemistry , RNA/chemistry , RNA/genetics , Crystallography , Fluorescence , Nucleic Acid Conformation , Polyelectrolytes/chemistry , Synthetic Biology , Thermodynamics
10.
Mol Carcinog ; 55(5): 842-52, 2016 May.
Article in English | MEDLINE | ID: mdl-25917938

ABSTRACT

A critical function of the telomere is to disguise chromosome ends from cellular recognition as double strand breaks, thereby preventing aberrant chromosome fusion events. Such chromosome end-to-end fusions are known to initiate genomic instability via breakage-fusion-bridge cycles. Telomere dysfunction and other forms of genomic assault likely result in misregulation of genes involved in growth control, cell death, and senescence pathways, lowering the threshold to malignancy and likely drive disease progression. Shortened telomeres and anaphase bridges have been reported in a wide variety of early precursor and malignant cancer lesions including those of the prostate. These findings are being extended using methods for the analysis of telomere fusions (decisive genetic markers for telomere dysfunction) specifically within human tissue DNA. Here we report that benign prostatic hyperplasia (BPH), high-grade prostatic intraepithelial neoplasia (PIN), and prostate cancer (PCa) prostate lesions all contain similarly high frequencies of telomere fusions and anaphase bridges. Tumor-adjacent, histologically normal prostate tissue generally did not contain telomere fusions or anaphase bridges as compared to matched PCa tissues. However, we found relatively high levels of telomerase activity in this histologically normal tumor-adjacent tissue that was reduced but closely correlated with telomerase levels in corresponding PCa samples. Thus, we present evidence of high levels of telomere dysfunction in BPH, an established early precursor (PIN) and prostate cancer lesions but not generally in tumor adjacent normal tissue. Our results suggest that telomere dysfunction may be a common gateway event leading to genomic instability in prostate tumorigenesis. .


Subject(s)
Chromosomal Instability , Prostatic Hyperplasia/genetics , Prostatic Intraepithelial Neoplasia/genetics , Prostatic Neoplasms/genetics , Telomere/metabolism , Aged , Aged, 80 and over , Cell Line, Tumor , HeLa Cells , Humans , In Situ Hybridization, Fluorescence , Male , Middle Aged , Neoplasm Grading , Prostatic Intraepithelial Neoplasia/metabolism , Prostatic Intraepithelial Neoplasia/pathology , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology
11.
J Biol Chem ; 283(4): 2070-7, 2008 Jan 25.
Article in English | MEDLINE | ID: mdl-17999956

ABSTRACT

In mammalian cells, specific aminoacyl-transfer RNA (tRNA) synthetases have cytokine functions that require interactions with partners outside of the translation apparatus. Little is known about these interactions and how they facilitate expanded functions that link protein translation to other cellular pathways. For example, an alternative splice fragment of tryptophanyl-tRNA synthetase (TrpRS) and a similar natural proteolytic fragment are potent angiostatic factors that act through the vascular endothelial-cadherin receptor and Akt signaling pathway. Here we demonstrate mobilization of TrpRS for exocytosis from endothelial cells and the potential for plasmin to activate the cytokine function of the extracellular synthetase. Direct physical evidence showed that the annexin II-S100A10 complex, which regulates exocytosis, forms a ternary complex with TrpRS. Functional studies demonstrate that both annexin II and S100A10 regulate trafficking of TrpRS. Thus, complexes of mammalian tRNA synthetases with seemingly disparate proteins may in general be relevant to understanding how their expanded functions are implemented.


Subject(s)
Angiostatic Proteins/metabolism , Annexin A2/metabolism , Cytokines/metabolism , Endothelial Cells/metabolism , Fibrinolysin/metabolism , S100 Proteins/metabolism , Tryptophan-tRNA Ligase/metabolism , Alternative Splicing/physiology , Angiostatic Proteins/genetics , Annexin A2/genetics , Cells, Cultured , Cytokines/genetics , Endothelial Cells/cytology , Exocytosis/physiology , Fibrinolysin/genetics , Humans , Multiprotein Complexes/genetics , Multiprotein Complexes/metabolism , Protein Biosynthesis/physiology , Protein Transport/physiology , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , S100 Proteins/genetics , Signal Transduction/physiology , Tryptophan-tRNA Ligase/genetics
12.
Chem Biol ; 14(12): 1323-33, 2007 Dec.
Article in English | MEDLINE | ID: mdl-18096501

ABSTRACT

Disease-causing mutations occur in genes for aminoacyl tRNA synthetases. That some mutations are dominant suggests a gain of function. Native tRNA synthetases, such as tyrosyl-tRNA synthetase (TyrRS) and tryptophanyl-tRNA synthetase, catalyze aminoacylation and are also procytokines that are activated by natural fragmentation. In principle, however, gain-of-function phenotypes could arise from mutational activation of synthetase procytokines. From crystal structure analysis, we hypothesized that a steric block of a critical Glu-Leu-Arg (ELR) motif in full-length TyrRS suppresses the cytokine activity of a natural fragment. To test this hypothesis, we attempted to uncover ELR in the procytokine by mutating a conserved tyrosine (Y341) that tethers ELR. Site-specific proteolytic cleavage and small-angle X-ray scattering established subtle opening of the structure by the mutation. Strikingly, four different assays demonstrated mutational activation of cytokine functions. The results prove the possibilities for constitutive gain-of-function mutations in tRNA synthetases.


Subject(s)
Cytokines/metabolism , Mutation , Tyrosine-tRNA Ligase/metabolism , Amino Acid Motifs/genetics , Amino Acid Substitution , Animals , Cattle , Cell Movement/drug effects , Cell Proliferation/drug effects , Chemotaxis, Leukocyte/drug effects , Chick Embryo , Endothelial Cells/cytology , Endothelial Cells/drug effects , Humans , Leukocytes, Mononuclear/cytology , Leukocytes, Mononuclear/drug effects , Mice , Mice, Nude , Models, Molecular , Neovascularization, Physiologic/drug effects , Peptide Fragments/chemistry , Peptide Fragments/pharmacology , Peptide Hydrolases/chemistry , Peptide Hydrolases/genetics , Peptide Hydrolases/metabolism , Protein Conformation , Protein Structure, Tertiary , Scattering, Small Angle , Tyrosine-tRNA Ligase/chemistry , Tyrosine-tRNA Ligase/genetics , X-Ray Diffraction
13.
Phys Ther ; 83(6): 567-80, 2003 Jun.
Article in English | MEDLINE | ID: mdl-12775202

ABSTRACT

BACKGROUND AND PURPOSE: Hemispherectomy is performed to help control intractable seizures, yet little research quantifies and projects the clinical course of the impairments, functional limitations, and disabilities of patients who have undergone the procedure. This case report describes the physical therapist preoperative and postoperative examination, evaluation, and intervention during the acute hospitalization of an adult who underwent a right hemispherectomy. CASE DESCRIPTION: The patient was a 27-year-old man who had intractable seizures despite having tried multiple drug regimens and undergoing several surgical interventions after a brain injury at age 5 years. He underwent a right functional hemispherectomy and then had 9 postoperative physical therapy sessions during his acute hospitalization. OUTCOMES: The patient made rapid gains, surpassing all initial goals. At discharge, the patient had distal left-sided sensorimotor impairments, but he was able to ambulate 121.9 m (400 ft) with assistance to maintain his balance. DISCUSSION: The patient's posthemispherectomy recovery was rapid. His brain injury at a young age may have triggered preoperative transfer of function to the unaffected left hemisphere. The prognosis for this patient's improvements of impairments and functional limitations was better than initially expected, perhaps because of the redundant features and plasticity of the central nervous system.


Subject(s)
Neurosurgical Procedures , Physical Therapy Modalities , Recovery of Function/physiology , Seizures/surgery , Adult , Disability Evaluation , Humans , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...