Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters











Publication year range
1.
J Biol Chem ; 300(6): 107374, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38762180

ABSTRACT

The pre-integration steps of the HIV-1 viral cycle are some of the most valuable targets of recent therapeutic innovations. HIV-1 integrase (IN) displays multiple functions, thanks to its considerable conformational flexibility. Recently, such flexible proteins have been characterized by their ability to form biomolecular condensates as a result of Liquid-Liquid-Phase-Separation (LLPS), allowing them to evolve in a restricted microenvironment within cells called membrane-less organelles (MLO). The LLPS context constitutes a more physiological approach to study the integration of molecular mechanisms performed by intasomes (complexes containing viral DNA, IN, and its cellular cofactor LEDGF/p75). We investigated here if such complexes can form LLPS in vitro and if IN enzymatic activities were affected by this LLPS environment. We observed that the LLPS formed by IN-LEDGF/p75 functional complexes modulate the in vitro IN activities. While the 3'-processing of viral DNA ends was drastically reduced inside LLPS, viral DNA strand transfer was strongly enhanced. These two catalytic IN activities appear thus tightly regulated by the environment encountered by intasomes.


Subject(s)
HIV Integrase , HIV-1 , Virus Integration , HIV Integrase/metabolism , HIV Integrase/chemistry , HIV Integrase/genetics , HIV-1/metabolism , HIV-1/physiology , Humans , DNA, Viral/metabolism , DNA, Viral/genetics , Intercellular Signaling Peptides and Proteins/metabolism , Intercellular Signaling Peptides and Proteins/chemistry
2.
Cell Rep ; 42(7): 112744, 2023 07 25.
Article in English | MEDLINE | ID: mdl-37418324

ABSTRACT

Completion of neuronal migration is critical for brain development. Kif21b is a plus-end-directed kinesin motor protein that promotes intracellular transport and controls microtubule dynamics in neurons. Here we report a physiological function of Kif21b during radial migration of projection neurons in the mouse developing cortex. In vivo analysis in mouse and live imaging on cultured slices demonstrate that Kif21b regulates the radial glia-guided locomotion of newborn neurons independently of its motility on microtubules. We show that Kif21b directly binds and regulates the actin cytoskeleton both in vitro and in vivo in migratory neurons. We establish that Kif21b-mediated regulation of actin cytoskeleton dynamics influences branching and nucleokinesis during neuronal locomotion. Altogether, our results reveal atypical roles of Kif21b on the actin cytoskeleton during migration of cortical projection neurons.


Subject(s)
Kinesins , Neurons , Animals , Mice , Actin Cytoskeleton/metabolism , Cell Movement , Interneurons/metabolism , Kinesins/metabolism , Microtubules/metabolism , Neurons/metabolism
3.
Antimicrob Agents Chemother ; 67(7): e0046223, 2023 07 18.
Article in English | MEDLINE | ID: mdl-37310224

ABSTRACT

HIV-1 integrase-LEDGF allosteric inhibitors (INLAIs) share the binding site on the viral protein with the host factor LEDGF/p75. These small molecules act as molecular glues promoting hyper-multimerization of HIV-1 IN protein to severely perturb maturation of viral particles. Herein, we describe a new series of INLAIs based on a benzene scaffold that display antiviral activity in the single digit nanomolar range. Akin to other compounds of this class, the INLAIs predominantly inhibit the late stages of HIV-1 replication. A series of high-resolution crystal structures revealed how these small molecules engage the catalytic core and the C-terminal domains of HIV-1 IN. No antagonism was observed between our lead INLAI compound BDM-2 and a panel of 16 clinical antiretrovirals. Moreover, we show that compounds retained high antiviral activity against HIV-1 variants resistant to IN strand transfer inhibitors and other classes of antiretroviral drugs. The virologic profile of BDM-2 and the recently completed single ascending dose phase I trial (ClinicalTrials.gov identifier: NCT03634085) warrant further clinical investigation for use in combination with other antiretroviral drugs. Moreover, our results suggest routes for further improvement of this emerging drug class.


Subject(s)
HIV Infections , HIV Integrase Inhibitors , HIV Integrase , Humans , Virus Replication , HIV Integrase Inhibitors/pharmacology , HIV Integrase Inhibitors/therapeutic use , Antiviral Agents/pharmacology , HIV Integrase/metabolism , HIV Infections/drug therapy , Allosteric Regulation
4.
PLoS One ; 17(12): e0279038, 2022.
Article in English | MEDLINE | ID: mdl-36520869

ABSTRACT

The production of full length, biologically active proteins in mammalian cells is critical for a wide variety of purposes ranging from structural studies to preparation of subunit vaccines. Prior research has shown that Modified vaccinia virus Ankara encoding the bacteriophage T7 RNA polymerase (MVA-T7) is particularly suitable for high level expression of proteins upon infection of mammalian cells. The expression system is safe for users and 10-50 mg of full length, biologically active proteins may be obtained in their native state, from a few litres of infected cell cultures. Here we report further improvements which allow an increase in the ease and speed of recombinant virus isolation, the scale-up of protein production and the simultaneous synthesis of several polypeptides belonging to a protein complex using a single virus vector. Isolation of MVA-T7 viruses encoding foreign proteins was simplified by combining positive selection for virus recombinants and negative selection against parental virus, a process which eliminated the need for tedious plaque purification. Scale-up of protein production was achieved by infecting a BHK 21 suspension cell line and inducing protein expression with previously infected cells instead of virus, thus saving time and effort in handling virus stocks. Protein complexes were produced from infected cells by concatenating the Tobacco Etch Virus (TEV) N1A protease sequence with each of the genes of the complex into a single ORF, each gene being separated from the other by twin TEV protease cleavage sites. We report the application of these methods to the production of a complex formed on the one hand between the HIV-1 integrase and its cell partner LEDGF and on the other between the HIV-1 VIF protein and its cell partners APOBEC3G, CBFß, Elo B and Elo C. The strategies developed in this study should be valuable for the overexpression and subsequent purification of numerous protein complexes.


Subject(s)
Genetic Vectors , Vaccinia virus , Animals , Vaccinia virus/genetics , Genetic Vectors/genetics , Cell Line , Mammals/genetics
5.
Int J Mol Sci ; 23(22)2022 Nov 08.
Article in English | MEDLINE | ID: mdl-36430221

ABSTRACT

Recent evidence indicates that the HIV-1 Integrase (IN) binds the viral genomic RNA (gRNA), playing a critical role in the morphogenesis of the viral particle and in the stability of the gRNA once in the host cell. By combining biophysical, molecular biology, and biochemical approaches, we found that the 18-residues flexible C-terminal tail of IN acts as a sensor of the peculiar apical structure of the trans-activation response element RNA (TAR), interacting with its hexaloop. We show that the binding of the whole IN C-terminal domain modifies TAR structure, exposing critical nucleotides. These modifications favour the subsequent binding of the HIV transcriptional trans-activator Tat to TAR, finally displacing IN from TAR. Based on these results, we propose that IN assists the binding of Tat to TAR RNA. This working model provides a mechanistic sketch accounting for the emerging role of IN in the early stages of proviral transcription and could help in the design of anti-HIV-1 therapeutics against this new target of the viral infectious cycle.


Subject(s)
HIV Integrase , tat Gene Products, Human Immunodeficiency Virus , tat Gene Products, Human Immunodeficiency Virus/genetics , RNA, Guide, Kinetoplastida , HIV Integrase/genetics , RNA, Viral/genetics , RNA, Viral/metabolism , Transcription Factors
6.
Biomedicines ; 10(1)2021 Dec 22.
Article in English | MEDLINE | ID: mdl-35052693

ABSTRACT

The HIV-1 Vif protein is essential for viral fitness and pathogenicity. Vif decreases expression of cellular restriction factors APOBEC3G (A3G), A3F, A3D and A3H, which inhibit HIV-1 replication by inducing hypermutation during reverse transcription. Vif counteracts A3G at several levels (transcription, translation, and protein degradation) that altogether reduce the levels of A3G in cells and prevent its incorporation into viral particles. How Vif affects A3G translation remains unclear. Here, we uncovered the importance of a short conserved uORF (upstream ORF) located within two critical stem-loop structures of the 5' untranslated region (5'-UTR) of A3G mRNA for this process. A3G translation occurs through a combination of leaky scanning and translation re-initiation and the presence of an intact uORF decreases the extent of global A3G translation under normal conditions. Interestingly, the uORF is also absolutely required for Vif-mediated translation inhibition and redirection of A3G mRNA into stress granules. Overall, we discovered that A3G translation is regulated by a small uORF conserved in the human population and that Vif uses this specific feature to repress its translation.

7.
Methods Mol Biol ; 1764: 315-328, 2018.
Article in English | MEDLINE | ID: mdl-29605924

ABSTRACT

Purification of proteins containing disordered regions and participating in transient complexes is often challenging because of the small amounts available after purification, their heterogeneity, instability, and/or poor solubility. To circumvent these difficulties, we set up a methodology that enables the production of stable complexes in large amounts for structural and functional studies. In this chapter, we describe the methodology used to establish the best cell culture conditions and buffer compositions to optimize soluble protein production and their stabilization through protein complex formation. Two examples of challenging protein families are described, namely, the human steroid nuclear receptors and the HIV-1 pre-integration complexes.


Subject(s)
Adaptor Proteins, Signal Transducing/isolation & purification , Chromatography, Affinity/methods , HIV Integrase/isolation & purification , Nuclear Receptor Coactivator 2/isolation & purification , Protein Interaction Domains and Motifs , Receptors, Cytoplasmic and Nuclear/isolation & purification , Receptors, Glucocorticoid/isolation & purification , Transcription Factors/isolation & purification , Adaptor Proteins, Signal Transducing/chemistry , Adaptor Proteins, Signal Transducing/metabolism , HIV Integrase/chemistry , HIV Integrase/metabolism , Humans , Nuclear Receptor Coactivator 2/chemistry , Nuclear Receptor Coactivator 2/metabolism , Protein Binding , Receptors, Cytoplasmic and Nuclear/chemistry , Receptors, Cytoplasmic and Nuclear/metabolism , Receptors, Glucocorticoid/chemistry , Receptors, Glucocorticoid/metabolism , Transcription Factors/chemistry , Transcription Factors/metabolism
8.
Sci Rep ; 6: 39507, 2016 12 20.
Article in English | MEDLINE | ID: mdl-27996044

ABSTRACT

The essential HIV-1 viral infectivity factor (Vif) allows productive infection of non-permissive cells expressing cytidine deaminases APOBEC3G (A3G) and A3F by decreasing their cellular level, and preventing their incorporation into virions. Unlike the Vif-induced degradation of A3G, the functional role of the inhibition of A3G translation by Vif remained unclear. Here, we show that two stem-loop structures within the 5'-untranslated region of A3G mRNA are crucial for translation inhibition by Vif in cells, and most Vif alleles neutralize A3G translation efficiently. Interestingly, K26R mutation in Vif abolishes degradation of A3G by the proteasome but has no effect at the translational level, indicating these two pathways are independent. These two mechanisms, proteasomal degradation and translational inhibition, similarly contribute to decrease the cellular level of A3G by Vif and to prevent its incorporation into virions. Importantly, inhibition of A3G translation is sufficient to partially restore viral infectivity in the absence of proteosomal degradation. These findings demonstrate that HIV-1 has evolved redundant mechanisms to specifically inhibit the potent antiviral activity of A3G.


Subject(s)
APOBEC-3G Deaminase/genetics , APOBEC-3G Deaminase/metabolism , Gene Expression Regulation, Viral , HIV Infections/genetics , vif Gene Products, Human Immunodeficiency Virus/metabolism , 5' Untranslated Regions , Alleles , Antiviral Agents/pharmacology , Cytosine Deaminase/metabolism , HEK293 Cells , Humans , Mutation , Proteasome Endopeptidase Complex/metabolism , Protein Processing, Post-Translational , RNA, Messenger/metabolism , vif Gene Products, Human Immunodeficiency Virus/genetics
9.
Nucleic Acids Res ; 44(16): 7830-47, 2016 09 19.
Article in English | MEDLINE | ID: mdl-27439712

ABSTRACT

Chromatin regulates the selectivity of retroviral integration into the genome of infected cells. At the nucleosome level, both histones and DNA structure are involved in this regulation. We propose a strategy that allows to specifically study a single factor: the DNA distortion induced by the nucleosome. This strategy relies on mimicking this distortion using DNA minicircles (MCs) having a fixed rotational orientation of DNA curvature, coupled with atomic-resolution modeling. Contrasting MCs with linear DNA fragments having identical sequences enabled us to analyze the impact of DNA distortion on the efficiency and selectivity of integration. We observed a global enhancement of HIV-1 integration in MCs and an enrichment of integration sites in the outward-facing DNA major grooves. Both of these changes are favored by LEDGF/p75, revealing a new, histone-independent role of this integration cofactor. PFV integration is also enhanced in MCs, but is not associated with a periodic redistribution of integration sites, thus highlighting its distinct catalytic properties. MCs help to separate the roles of target DNA structure, histone modifications and integrase (IN) cofactors during retroviral integration and to reveal IN-specific regulation mechanisms.


Subject(s)
DNA, Circular/chemistry , DNA, Viral/chemistry , Nucleic Acid Conformation , Retroviridae/physiology , Virus Integration , Gene Library , HIV Integrase/metabolism , HIV-1/physiology , Humans , Intercellular Signaling Peptides and Proteins/metabolism , Models, Molecular , Nucleosomes/metabolism
10.
Retrovirology ; 12: 53, 2015 Jun 24.
Article in English | MEDLINE | ID: mdl-26105074

ABSTRACT

BACKGROUND: Human immunodeficiency virus type 1 (HIV-1) has evolved a complex strategy to overcome the immune barriers it encounters throughout an organism thanks to its viral infectivity factor (Vif), a key protein for HIV-1 infectivity and in vivo pathogenesis. Vif interacts with and promotes "apolipoprotein B mRNA-editing enzyme-catalytic, polypeptide-like 3G" (A3G) ubiquitination and subsequent degradation by the proteasome, thus eluding A3G restriction activity against HIV-1. RESULTS: We found that cellular histone deacetylase 6 (HDAC6) directly interacts with A3G through its C-terminal BUZ domain (residues 841-1,215) to undergo a cellular co-distribution along microtubules and cytoplasm. The HDAC6/A3G complex occurs in the absence or presence of Vif, competes for Vif-mediated A3G degradation, and accounts for A3G steady-state expression level. In fact, HDAC6 directly interacts with and promotes Vif autophagic clearance, thanks to its C-terminal BUZ domain, a process requiring the deacetylase activity of HDAC6. HDAC6 degrades Vif without affecting the core binding factor ß (CBF-ß), a Vif-associated partner reported to be key for Vif- mediated A3G degradation. Thus HDAC6 antagonizes the proviral activity of Vif/CBF-ß-associated complex by targeting Vif and stabilizing A3G. Finally, in cells producing virions, we observed a clear-cut correlation between the ability of HDAC6 to degrade Vif and to restore A3G expression, suggesting that HDAC6 controls the amount of Vif incorporated into nascent virions and the ability of HIV-1 particles of being infectious. This effect seems independent on the presence of A3G inside virions and on viral tropism. CONCLUSIONS: Our study identifies for the first time a new cellular complex, HDAC6/A3G, involved in the autophagic degradation of Vif, and suggests that HDAC6 represents a new antiviral factor capable of controlling HIV-1 infectiveness by counteracting Vif and its functions.


Subject(s)
Autophagy , Cytidine Deaminase/metabolism , HIV-1/physiology , Histone Deacetylases/metabolism , Host-Pathogen Interactions , vif Gene Products, Human Immunodeficiency Virus/metabolism , APOBEC-3G Deaminase , Cell Line , Epithelial Cells/virology , Histone Deacetylase 6 , Humans , Protein Binding , Protein Interaction Mapping , Proteolysis
11.
Viruses ; 7(1): 199-218, 2015 Jan 19.
Article in English | MEDLINE | ID: mdl-25606970

ABSTRACT

Eukaryotic translation is a complex process composed of three main steps: initiation, elongation, and termination. During infections by RNA- and DNA-viruses, the eukaryotic translation machinery is used to assure optimal viral protein synthesis. Human immunodeficiency virus type I (HIV-1) uses several non-canonical pathways to translate its own proteins, such as leaky scanning, frameshifting, shunt, and cap-independent mechanisms. Moreover, HIV-1 modulates the host translation machinery by targeting key translation factors and overcomes different cellular obstacles that affect protein translation. In this review, we describe how HIV-1 proteins target several components of the eukaryotic translation machinery, which consequently improves viral translation and replication.


Subject(s)
HIV-1/physiology , Host-Pathogen Interactions , Protein Biosynthesis , Virus Replication , Humans
12.
J Virol ; 87(11): 6492-506, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23576497

ABSTRACT

The HIV-1 viral infectivity factor (Vif) is a small basic protein essential for viral fitness and pathogenicity. Vif allows productive infection in nonpermissive cells, including most natural HIV-1 target cells, by counteracting the cellular cytosine deaminases APOBEC3G (apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3G [A3G]) and A3F. Vif is also associated with the viral assembly complex and packaged into viral particles through interactions with the viral genomic RNA and the nucleocapsid domain of Pr55(Gag). Recently, we showed that oligomerization of Vif into high-molecular-mass complexes induces Vif folding and influences its binding to high-affinity RNA binding sites present in the HIV genomic RNA. To get further insight into the role of Vif multimerization in viral assembly and A3G repression, we used fluorescence lifetime imaging microscopy (FLIM)- and fluorescence resonance energy transfer (FRET)-based assays to investigate Vif-Vif interactions in living cells. By using two N-terminally tagged Vif proteins, we show that Vif-Vif interactions occur in living cells. This oligomerization is strongly reduced when the putative Vif multimerization domain ((161)PPLP(164)) is mutated, indicating that this domain is crucial, but that regions outside this motif also participate in Vif oligomerization. When coexpressed together with Pr55(Gag), Vif is largely relocated to the cell membrane, where Vif oligomerization also occurs. Interestingly, wild-type A3G strongly interferes with Vif multimerization, contrary to an A3G mutant that does not bind to Vif. These findings confirm that Vif oligomerization occurs in living cells partly through its C-terminal motif and suggest that A3G may target and perturb the Vif oligomerization state to limit its functions in the cell.


Subject(s)
Cytidine Deaminase/metabolism , HIV Infections/enzymology , HIV-1/metabolism , vif Gene Products, Human Immunodeficiency Virus/chemistry , vif Gene Products, Human Immunodeficiency Virus/metabolism , APOBEC-3G Deaminase , Amino Acid Motifs , Cytidine Deaminase/genetics , HIV Infections/genetics , HIV Infections/virology , HIV-1/chemistry , HIV-1/genetics , Humans , Protein Multimerization , vif Gene Products, Human Immunodeficiency Virus/genetics
13.
Virus Res ; 169(2): 361-76, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22728817

ABSTRACT

The viral infectivity factor (Vif) is essential for the productive infection and dissemination of HIV-1 in non-permissive cells that involve most natural HIV-1 target cells. Vif counteracts the packaging of two cellular cytidine deaminases named APOBEC3G (A3G) and A3F by diverse mechanisms including the recruitment of an E3 ubiquitin ligase complex and the proteasomal degradation of A3G/A3F, the inhibition of A3G mRNA translation or by a direct competition mechanism. In addition, Vif appears to be an active partner of the late steps of viral replication by participating in virus assembly and Gag processing, thus regulating the final stage of virion formation notably genomic RNA dimerization and by inhibiting the initiation of reverse transcription. Vif is a small pleiotropic protein with multiple domains, and recent studies highlighted the importance of Vif conformation and flexibility in counteracting A3G and in binding RNA. In this review, we will focus on the oligomerization and RNA chaperone properties of Vif and show that the intrinsic disordered nature of some Vif domains could play an important role in virus assembly and replication. Experimental evidence demonstrating the RNA chaperone activity of Vif will be presented.


Subject(s)
HIV-1/physiology , Molecular Chaperones/metabolism , Protein Multimerization , RNA, Transfer, Lys/metabolism , RNA, Viral/metabolism , Virus Assembly , vif Gene Products, Human Immunodeficiency Virus/metabolism
15.
J Biol Chem ; 284(50): 34911-7, 2009 Dec 11.
Article in English | MEDLINE | ID: mdl-19840948

ABSTRACT

Nascent mRNAs produced by transcription in the nucleus are subsequently processed and packaged into mRNA ribonucleoprotein particles (messenger ribonucleoproteins (mRNPs)) before export to the cytoplasm. Here, we have used the poly(A)-binding protein Nab2 to isolate mRNPs from yeast under conditions that preserve mRNA integrity. Upon Nab2-tandem affinity purification, several mRNA export factors were co-enriched (Yra1, Mex67, THO-TREX) that were present in mRNPs of different size and mRNA length. High-throughput sequencing of the co-precipitated RNAs indicated that Nab2 is associated with the bulk of yeast transcripts with no specificity for different mRNA classes. Electron microscopy revealed that many of the mRNPs have a characteristic elongated structure. Our data suggest that mRNPs, although associated with different mRNAs, have a unifying core structure.


Subject(s)
Nucleocytoplasmic Transport Proteins/chemistry , Nucleocytoplasmic Transport Proteins/metabolism , RNA, Messenger/metabolism , RNA-Binding Proteins/chemistry , RNA-Binding Proteins/metabolism , Ribonucleoproteins/chemistry , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Gene Expression Profiling , Nucleic Acid Conformation , Nucleocytoplasmic Transport Proteins/genetics , Nucleocytoplasmic Transport Proteins/isolation & purification , Protein Binding , Protein Conformation , RNA, Fungal/genetics , RNA, Fungal/metabolism , RNA, Messenger/genetics , RNA-Binding Proteins/genetics , RNA-Binding Proteins/isolation & purification , Ribonucleoproteins/genetics , Ribonucleoproteins/metabolism , Ribonucleoproteins/ultrastructure , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/isolation & purification
16.
J Virol ; 79(22): 14102-11, 2005 Nov.
Article in English | MEDLINE | ID: mdl-16254345

ABSTRACT

Most human herpesviruses, including Epstein-Barr virus (EBV), express a protein which functions primarily as an mRNA export factor. Previously, we deleted the gene for the Epstein-Barr virus mRNA export factor EB2 from the EBV genome and then introduced the mutated genome into 293 cells. Using a transcomplementation assay in which ectopic expression of the transcription factor EB1/ZEBRA was sufficient to induce the EBV productive cycle, we showed that Ori-Lyt-dependent replication of the EBV DNA occurs in the absence of EB2, indicating that EB2 is not essential for the expression and export of early mRNAs. However, in the absence of EB2, no infectious viral particles are produced (H. Gruffat, J. Batisse, D. Pich, B. Neuhierl, E. Manet, W. Hammerschmidt, and A. Sergeant, J. Virol. 76:9635-9644, 2002). In this report, we now show that EB2 is essential for the nuclear export of most, but not all, late mRNAs produced from intronless genes that translate into proteins involved in intranuclear capsid assembly and maturation. As a consequence, we show that EB2 is essential for the proper assembly of intranuclear capsids. Interestingly, the late BLLF1 gene contains an intron, and both unspliced and spliced mRNAs must be exported to the cytoplasm to be translated into gp350 and gp220, respectively (M. Hummel, D. A. Thorley-Lawson, and E. Kieff, J. Virol. 49:413-417, 1984). Our results also demonstrate that although BLLF1 spliced mRNAs are exported to the cytoplasm independently of EB2, EB2 is essential for the nuclear export of unspliced BLLF1 mRNA. In the same assay, herpes simplex virus 1 ICP27 completely inhibited the nuclear export of BLLF1 spliced mRNAs whereas unspliced BLLF1 mRNAs were exported, confirming that in a physiological assay, ICP27 inhibits splicing.


Subject(s)
Herpesvirus 4, Human/genetics , Phosphoproteins/genetics , Phosphoproteins/metabolism , RNA, Messenger/genetics , RNA, Viral/genetics , Trans-Activators/genetics , Trans-Activators/metabolism , Viral Proteins/genetics , Viral Proteins/metabolism , Base Sequence , Cell Line , DNA Primers , Genetic Vectors , Humans , Open Reading Frames , Restriction Mapping , Transfection
17.
J Virol ; 76(19): 9635-44, 2002 Oct.
Article in English | MEDLINE | ID: mdl-12208942

ABSTRACT

The splicing machinery which positions a protein export complex near the exon-exon junction mediates nuclear export of mRNAs generated from intron-containing genes. Many Epstein-Barr virus (EBV) early and late genes are intronless, and an alternative pathway, independent of splicing, must export the corresponding mRNAs. Since the EBV EB2 protein induces the cytoplasmic accumulation of intronless mRNA, it is tempting to speculate that EB2 is a viral adapter involved in the export of intronless viral mRNA. If this is true, then the EB2 protein is essential for the production of EBV infectious virions. To test this hypothesis, we generated an EBV mutant in which the BMLF1 gene, encoding the EB2 protein, has been deleted (EBV(BMLF1-KO)). Our studies show that EB2 is necessary for the production of infectious EBV and that its function cannot be transcomplemented by a cellular factor. In the EBV(BMLF1-KO) 293 cells, oriLyt-dependent DNA replication was greatly enhanced by EB2. Accordingly, EB2 induced the cytoplasmic accumulation of a subset of EBV early mRNAs coding for essential proteins implicated in EBV DNA replication during the productive cycle. Two herpesvirus homologs of the EB2 protein, the herpes simplex virus type 1 protein ICP27 and, the human cytomegalovirus protein UL69, only partly rescued the phenotype of the EBV(BMLF1-KO) mutant, indicating that some EB2 functions in virus production cannot be transcomplemented by ICP27 and UL69.


Subject(s)
DNA Replication , Herpesvirus 4, Human/physiology , Phosphoproteins/physiology , Trans-Activators/physiology , Viral Proteins/physiology , Virus Replication , Active Transport, Cell Nucleus , Amino Acid Sequence , DNA-Binding Proteins/genetics , DNA-Directed DNA Polymerase/genetics , Molecular Sequence Data , RNA, Messenger/analysis , RNA, Messenger/metabolism , Viral Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL