Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Neuropharmacology ; 160: 107785, 2019 12 01.
Article in English | MEDLINE | ID: mdl-31541651

ABSTRACT

Alzheimer's Disease (AD) is the most prevalent neurodegenerative disorder. Despite advances in the understanding of its pathophysiology, none of the available therapies prevents disease progression. Excess glutamate plays an important role in excitotoxicity by activating ionotropic receptors. However, the mechanisms modulating neuronal cell survival/death via metabotropic glutamate receptors (mGluRs) are not completely understood. Recent data indicates that CDPPB, a positive allosteric modulator of mGluR5, has neuroprotective effects. Thus, this work aimed to investigate CDPPB treatment effects on amyloid-ß (Aß) induced pathological alterations in vitro and in vivo and in a transgenic mouse model of AD (T41 mice). Aß induced cell death in primary cultures of hippocampal neurons, which was prevented by CDPPB. Male C57BL/6 mice underwent stereotaxic surgery for unilateral intra-hippocampal Aß injection, which induced memory deficits, neurodegeneration, neuronal viability reduction and decrease of doublecortin-positive cells, a marker of immature neurons and neuronal proliferation. Treatment with CDPPB for 8 days reversed neurodegeneration and doublecortin-positive cells loss and recovered memory function. Fourteen months old T41 mice presented cognitive deficits, neuronal viability reduction, gliosis and Aß accumulation. Treatment with CDPPB for 28 days increased neuronal viability (32.2% increase in NeuN+ cells) and reduced gliosis in CA1 region (Iba-1+ area by 31.3% and GFAP+ area by 37.5%) in transgenic animals, without inducing hepatotoxicity. However, it did not reverse cognitive deficit. Despite a four-week treatment did not prevent memory loss in aged transgenic mice, CDPPB is protective against Aß stimulus. Therefore, this drug represents a potential candidate for further investigations as AD treatment.


Subject(s)
Alzheimer Disease/drug therapy , Benzamides/pharmacology , Neuroprotective Agents/pharmacology , Pyrazoles/pharmacology , Receptor, Metabotropic Glutamate 5/drug effects , Allosteric Regulation , Amyloid beta-Peptides/adverse effects , Animals , Benzamides/administration & dosage , Disease Models, Animal , Hippocampus/drug effects , Male , Memory/drug effects , Mice , Mice, Inbred C57BL , Mice, Transgenic , Neurodegenerative Diseases/chemically induced , Neurodegenerative Diseases/drug therapy , Neurons/drug effects , Neuroprotective Agents/administration & dosage , Peptide Fragments/adverse effects , Pyrazoles/administration & dosage , Receptor, Metabotropic Glutamate 5/metabolism
2.
Int J Mol Sci ; 20(9)2019 May 09.
Article in English | MEDLINE | ID: mdl-31075861

ABSTRACT

A large body of experimental evidence suggests that neuroinflammation is a key pathological event triggering and perpetuating the neurodegenerative process associated with many neurological diseases. Therefore, different stimuli, such as lipopolysaccharide (LPS), are used to model neuroinflammation associated with neurodegeneration. By acting at its receptors, LPS activates various intracellular molecules, which alter the expression of a plethora of inflammatory mediators. These factors, in turn, initiate or contribute to the development of neurodegenerative processes. Therefore, LPS is an important tool for the study of neuroinflammation associated with neurodegenerative diseases. However, the serotype, route of administration, and number of injections of this toxin induce varied pathological responses. Thus, here, we review the use of LPS in various models of neurodegeneration as well as discuss the neuroinflammatory mechanisms induced by this toxin that could underpin the pathological events linked to the neurodegenerative process.


Subject(s)
Inflammation/pathology , Nerve Degeneration/pathology , Nervous System/pathology , Animals , Disease Models, Animal , Humans , Lipopolysaccharides , Neurodegenerative Diseases/pathology
3.
Front Cell Neurosci ; 12: 329, 2018.
Article in English | MEDLINE | ID: mdl-30333729

ABSTRACT

Toll-like receptors (TLRs) are a group of receptors widely distributed in the organism. In the central nervous system, they are expressed in neurons, astrocytes and microglia. Although their involvement in immunity is notorious, different articles have demonstrated their roles in physiological and pathological conditions, including neurodegeneration. There is increasing evidence of an involvement of TLRs, especially TLR2, 4 and 9 in neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS). In this sense, their expression in microglia might modulate the activity of these cells, which in turn, lead to protective or deleterious effects over neurons and other cells. Therefore, TLRs might mediate the link between inflammation and neurodegenerative diseases. However, further studies have to be performed to elucidate the role of the other TLRs in these diseases and to further prove and confirm the pathophysiological role of all TLRs in neurodegeneration. In this article, we revise and summarize the current knowledge regarding the role of TLRs in neurodegeneration with the focus on the possible functions of these receptors in microglia.

SELECTION OF CITATIONS
SEARCH DETAIL
...