Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem A ; 126(45): 8494-8507, 2022 Nov 17.
Article in English | MEDLINE | ID: mdl-36334028

ABSTRACT

Case studies of 1T-TiSe2 and YBa2Cu3O7-δ have demonstrated that X-ray diffraction (XRD) studies can be used to trace even subtle structural phase transitions which are inherently connected with the onset of superconductivity in these benchmark systems. However, the utility of XRD in the investigation of superconductors like MgB2 lacking an additional symmetry-breaking structural phase transition is not immediately evident. Nevertheless, high-resolution powder XRD experiments on MgB2 in combination with maximum entropy method analyses hinted at differences between the electron density distributions at room temperature and 15 K, that is, below the Tc of approx. 39 K. The high-resolution single-crystal XRD experiments in combination with multipolar refinements presented here can reproduce these results but show that the observed temperature-dependent density changes are almost entirely due to a decrease of atomic displacement parameters as a natural consequence of a reduced thermal vibration amplitude with decreasing temperature. Our investigations also shed new light on the presence or absence of magnesium vacancies in MgB2 samples─a defect type claimed to control the superconducting properties of the compound. We propose that previous reports on the tendency of MgB2 to form non-stoichiometric Mg1-xB2 phases (1 - x ∼ 0.95) during high-temperature (HT) synthesis might result from the interpretation of XRD data of insufficient resolution and/or usage of inflexible refinement models. Indeed, advanced refinements based on an Extended Hansen-Coppens multipolar model and high-resolution X-ray data, which consider explicitly the contraction of core and valence shells of the magnesium cations, do not provide any significant evidence for the formation of non-stoichiometric Mg1-xB2 phases during HT synthesis.

2.
J Phys Chem A ; 121(38): 7219-7235, 2017 Sep 28.
Article in English | MEDLINE | ID: mdl-28922608

ABSTRACT

We outline in this combined experimental and theoretical NMR study that sign and magnitude of J(Si,H) coupling constants provide reliable indicators to evaluate the extent of the oxidative addition of Si-H bonds in hydrosilane complexes. In combination with experimental electron density studies and MO analyses a simple structure-property relationship emerges: positive J(Si,H) coupling constants are observed in cases where M → L π-back-donation (M = transition metal; L = hydrosilane ligand) dominates. The corresponding complexes are located close to the terminus of the respective oxidative addition trajectory. In contrast negative J(Si,H) values signal the predominance of significant covalent Si-H interactions and the according complexes reside at an earlier stage of the oxidative addition reaction pathway. Hence, in nonclassical hydrosilane complexes such as Cp2Ti(PMe3)(HSiMe3-nCln) (with n = 1-3) the sign of J(Si,H) changes from minus to plus with increasing number of chloro substituents n and maps the rising degree of oxidative addition. Accordingly, the sign and magnitude of J(Si,H) coupling constants can be employed to identify and characterize nonclassical hydrosilane species also in solution. These NMR studies might therefore help to reveal the salient control parameters of the Si-H bond activation process in transition-metal hydrosilane complexes which represent key intermediates for numerous metal-catalyzed Si-H bond activation processes. Furthermore, experimental high-resolution and high-pressure X-ray diffraction studies were undertaken to explore the close relationship between the topology of the electron density displayed by the η2(Si-H)M units and their respective J(Si,H) couplings.

3.
Angew Chem Int Ed Engl ; 55(38): 11673-7, 2016 09 12.
Article in English | MEDLINE | ID: mdl-27503583

ABSTRACT

We will outline that the sign and magnitude of J(Si,H) coupling constants provide a highly sensitive tool to measure the extent of Si-H bond activation in nonclassical silane complexes. Up to now, this structure-property relationship was obscured by erroneous J(Si,H) sign determinations in the literature. These new findings also help to identify the salient control parameters of the Si-H bond activation process in nonclassical silane complexes.

4.
J Chem Phys ; 144(7): 071101, 2016 Feb 21.
Article in English | MEDLINE | ID: mdl-26896969

ABSTRACT

In this communication, a procedure is presented which allows for the determination of the scalar-relativistic contraction of individual electronic shells of transition metal atoms from X-ray structure factor data. The procedure is verified and benchmarked employing theoretical and experimental F(hkl) data, revealing an overall good agreement between the experimentally determined results and the theoretical reference values. From the experimental data, the relativistic contraction of the n = 2 shell of a cerium atom is, for example, determined as 0.097 pm, compared to a theoretical reference value of 0.116 pm. It is further demonstrated that the reproducibility of the results is excellent when comparing different experimental data sets. Finally, the dependency of the according results on the data resolution of the structure factor data is investigated.

5.
J Phys Chem A ; 117(45): 11566-79, 2013 Nov 14.
Article in English | MEDLINE | ID: mdl-24111934

ABSTRACT

Accurate X-ray diffraction experiments allow for a reconstruction of the electron density distribution of solids and molecules in a crystal. The basis for the reconstruction of the electron density is in many cases a multipolar expansion of the X-ray scattering factors in terms of spherical harmonics, a so-called multipolar model. This commonly used ansatz splits the total electron density of each pseudoatom in the crystal into (i) a spherical core, (ii) a spherical valence, and (iii) a nonspherical valence contribution. Previous studies, for example, on diamond and α-silicon have already shown that this approximation is no longer valid when ultrahigh-resolution diffraction data is taken into account. We report here the results of an analysis of the calculated electron density distribution in the d(0) transition metal compounds [TMCH3](2+) (TM = Sc, Y, and La) at subatomic resolution. By a detailed molecular orbital analysis, it is demonstrated that due to the radial nodal structure of the 3d, 4d, and 5d orbitals involved in the TM-C bond formation a significant polarization of the electron density in the inner electronic shells of the TM atoms is observed. We further show that these polarizations have to be taken into account by an extended multipolar model in order to recover accurate electron density distributions from high-resolution structure factors calculated for the title compounds.

SELECTION OF CITATIONS
SEARCH DETAIL
...