Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Biometrics ; 80(2)2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38804219

ABSTRACT

Sequential multiple assignment randomized trials (SMARTs) are the gold standard for estimating optimal dynamic treatment regimes (DTRs), but are costly and require a large sample size. We introduce the multi-stage augmented Q-learning estimator (MAQE) to improve efficiency of estimation of optimal DTRs by augmenting SMART data with observational data. Our motivating example comes from the Back Pain Consortium, where one of the overarching aims is to learn how to tailor treatments for chronic low back pain to individual patient phenotypes, knowledge which is lacking clinically. The Consortium-wide collaborative SMART and observational studies within the Consortium collect data on the same participant phenotypes, treatments, and outcomes at multiple time points, which can easily be integrated. Previously published single-stage augmentation methods for integration of trial and observational study (OS) data were adapted to estimate optimal DTRs from SMARTs using Q-learning. Simulation studies show the MAQE, which integrates phenotype, treatment, and outcome information from multiple studies over multiple time points, more accurately estimates the optimal DTR, and has a higher average value than a comparable Q-learning estimator without augmentation. We demonstrate this improvement is robust to a wide range of trial and OS sample sizes, addition of noise variables, and effect sizes.


Subject(s)
Computer Simulation , Low Back Pain , Observational Studies as Topic , Randomized Controlled Trials as Topic , Humans , Observational Studies as Topic/statistics & numerical data , Randomized Controlled Trials as Topic/statistics & numerical data , Low Back Pain/therapy , Sample Size , Treatment Outcome , Models, Statistical , Biometry/methods
2.
Gerodontology ; 2023 Aug 07.
Article in English | MEDLINE | ID: mdl-37550001

ABSTRACT

OBJECTIVE: To investigate the association of demographic and socio-economic characteristics with self-reported oral health (SROH) among older adults who participated in the Health and Retirement Study (HRS) in 2008, 2018, or both, and to describe temporal changes. METHODS: Data were from the University of Michigan's Health and Retirement Study (HRS), a nationally representative longitudinal survey of Americans aged 51 and older. Responses from participants who completed the Core HRS survey and Dental Module (DM) in 2008 (n = 1310), 2018 (n = 1330), and the "common group" at both timepoints (n = 559) were analysed. Using the common group, the outcome measure was 2018 self-rated oral health (Favourable vs Unfavourable). Potential explanatory variables included 2008 self-rated oral health (SROH), sociodemographic, and dental utilisation-related factors. Survey logistic regression analysis was used to identify factors that were associated with unfavourable 2018 SROH in 2018. RESULTS: Unfavourable SROH prevalence was 28.5% and 31.6% in 2008 and 2018, respectively. Among the common, longitudinal group, the unfavourable prevalence remained the same, 26.1% at both timepoints. A positive association was seen between 2018 unfavourable SROH and baseline variables of 2008 unfavourable SROH, male gender, less education, and lower levels of wealth. CONCLUSIONS: Over a quarter of participants reported unfavourable SROH. There was little change in SROH during this period. Sociodemographic factors influence the SROH of the older population. Policies and programs to promote and protect the oral health of older adults should be designed and implemented to reduce social inequalities and improve the SROH of disadvantaged older adults.

3.
Pain Med ; 24(Suppl 1): S95-S104, 2023 08 04.
Article in English | MEDLINE | ID: mdl-36721327

ABSTRACT

OBJECTIVE: One aim of the Back Pain Consortium (BACPAC) Research Program is to develop an integrated model of chronic low back pain that is informed by combined data from translational research and clinical trials. We describe efforts to maximize data harmonization and accessibility to facilitate Consortium-wide analyses. METHODS: Consortium-wide working groups established harmonized data elements to be collected in all studies and developed standards for tabular and nontabular data (eg, imaging and omics). The BACPAC Data Portal was developed to facilitate research collaboration across the Consortium. RESULTS: Clinical experts developed the BACPAC Minimum Dataset with required domains and outcome measures to be collected by use of questionnaires across projects. Other nonrequired domain-specific measures are collected by multiple studies. To optimize cross-study analyses, a modified data standard was developed on the basis of the Clinical Data Interchange Standards Consortium Study Data Tabulation Model to harmonize data structures and facilitate integration of baseline characteristics, participant-reported outcomes, chronic low back pain treatments, clinical exam, functional performance, psychosocial characteristics, quantitative sensory testing, imaging, and biomechanical data. Standards to accommodate the unique features of chronic low back pain data were adopted. Research units submit standardized study data to the BACPAC Data Portal, developed as a secure cloud-based central data repository and computing infrastructure for researchers to access and conduct analyses on data collected by or acquired for BACPAC. CONCLUSIONS: BACPAC harmonization efforts and data standards serve as an innovative model for data integration that could be used as a framework for other consortia with multiple, decentralized research programs.


Subject(s)
Low Back Pain , Humans , Low Back Pain/therapy , Outcome Assessment, Health Care , Research Design
4.
Genome Med ; 13(1): 74, 2021 04 30.
Article in English | MEDLINE | ID: mdl-33931109

ABSTRACT

BACKGROUND: DNA methylation (DNAm) is associated with gene regulation and estimated glomerular filtration rate (eGFR), a measure of kidney function. Decreased eGFR is more common among US Hispanics and African Americans. The causes for this are poorly understood. We aimed to identify trans-ethnic and ethnic-specific differentially methylated positions (DMPs) associated with eGFR using an agnostic, genome-wide approach. METHODS: The study included up to 5428 participants from multi-ethnic studies for discovery and 8109 participants for replication. We tested the associations between whole blood DNAm and eGFR using beta values from Illumina 450K or EPIC arrays. Ethnicity-stratified analyses were performed using linear mixed models adjusting for age, sex, smoking, and study-specific and technical variables. Summary results were meta-analyzed within and across ethnicities. Findings were assessed using integrative epigenomics methods and pathway analyses. RESULTS: We identified 93 DMPs associated with eGFR at an FDR of 0.05 and replicated 13 and 1 DMPs across independent samples in trans-ethnic and African American meta-analyses, respectively. The study also validated 6 previously published DMPs. Identified DMPs showed significant overlap enrichment with DNase I hypersensitive sites in kidney tissue, sites associated with the expression of proximal genes, and transcription factor motifs and pathways associated with kidney tissue and kidney development. CONCLUSIONS: We uncovered trans-ethnic and ethnic-specific DMPs associated with eGFR, including DMPs enriched in regulatory elements in kidney tissue and pathways related to kidney development. These findings shed light on epigenetic mechanisms associated with kidney function, bridging the gap between population-specific eGFR-associated DNAm and tissue-specific regulatory context.


Subject(s)
Epigenesis, Genetic , Epigenomics , Genome-Wide Association Study , Kidney/metabolism , Quantitative Trait Loci , Quantitative Trait, Heritable , Racial Groups/genetics , CpG Islands , DNA Methylation , Epigenomics/methods , Gene Expression Regulation , Genetic Variation , Genetics, Population , Glomerular Filtration Rate , Humans , Kidney Function Tests , Phenotype
5.
Life Sci ; 267: 118974, 2021 Feb 15.
Article in English | MEDLINE | ID: mdl-33385407

ABSTRACT

AIM: We aimed to determine whether the sodium/glucose cotransporter family member SGLT3, a proposed glucose sensor, is expressed in the intestine and/or kidney, and if its expression is altered in mouse models of obesity and in humans before and after weight-loss surgery. MAIN METHODS: We used in-situ hybridization and quantitative PCR to determine whether the Sglt3 isoforms 3a and 3b were expressed in the intestine and kidney of C57, leptin-deficient ob/ob, and diabetic BTBR ob/ob mice. Western blotting and immunohistochemistry were also used to assess SGLT3 protein levels in jejunal biopsies from obese patients before and after weight-loss Roux-en-Y gastric bypass surgery (RYGB), and in lean healthy controls. KEY FINDINGS: Sglt3a/3b mRNA was detected in the small intestine (duodenum, jejunum and ileum), but not in the large intestine or kidneys of mice. Both isoforms were detected in epithelial cells (confirmed using intestinal organoids). Expression of Sglt3a/3b mRNA in duodenum and jejunum was significantly lower in ob/ob and BTBR ob/ob mice than in normal-weight littermates. Jejunal SGLT3 protein levels in aged obese patients before RYGB were lower than in lean individuals, but substantially upregulated 6 months post-RYGB. SIGNIFICANCE: Our study shows that Sglt3a/3b is expressed primarily in epithelial cells of the small intestine in mice. Furthermore, we observed an association between intestinal mRNA Sglt3a/3b expression and obesity in mice, and between jejunal SGLT3 protein levels and obesity in humans. Further studies are required to determine the possible role of SGLT3 in obesity.


Subject(s)
Obesity/metabolism , Sodium-Glucose Transport Proteins/genetics , Adult , Animals , Disease Models, Animal , Down-Regulation , Female , Gastric Bypass , Gene Expression , Humans , Insulin/metabolism , Insulin Resistance , Intestinal Mucosa/metabolism , Intestine, Small/metabolism , Jejunum/metabolism , Leptin/deficiency , Leptin/metabolism , Male , Mice , Mice, Inbred C57BL , Middle Aged , Obesity/genetics , Protein Isoforms , RNA, Messenger/genetics , RNA, Messenger/metabolism , Sodium-Glucose Transport Proteins/biosynthesis , Sodium-Glucose Transport Proteins/metabolism , Transcriptome , Weight Loss
6.
J Am Soc Nephrol ; 30(3): 421-441, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30760496

ABSTRACT

BACKGROUND: Linking genetic risk loci identified by genome-wide association studies (GWAS) to their causal genes remains a major challenge. Disease-associated genetic variants are concentrated in regions containing regulatory DNA elements, such as promoters and enhancers. Although researchers have previously published DNA maps of these regulatory regions for kidney tubule cells and glomerular endothelial cells, maps for podocytes and mesangial cells have not been available. METHODS: We generated regulatory DNA maps (DNase-seq) and paired gene expression profiles (RNA-seq) from primary outgrowth cultures of human glomeruli that were composed mainly of podocytes and mesangial cells. We generated similar datasets from renal cortex cultures, to compare with those of the glomerular cultures. Because regulatory DNA elements can act on target genes across large genomic distances, we also generated a chromatin conformation map from freshly isolated human glomeruli. RESULTS: We identified thousands of unique regulatory DNA elements, many located close to transcription factor genes, which the glomerular and cortex samples expressed at different levels. We found that genetic variants associated with kidney diseases (GWAS) and kidney expression quantitative trait loci were enriched in regulatory DNA regions. By combining GWAS, epigenomic, and chromatin conformation data, we functionally annotated 46 kidney disease genes. CONCLUSIONS: We demonstrate a powerful approach to functionally connect kidney disease-/trait-associated loci to their target genes by leveraging unique regulatory DNA maps and integrated epigenomic and genetic analysis. This process can be applied to other kidney cell types and will enhance our understanding of genome regulation and its effects on gene expression in kidney disease.

7.
Am J Pathol ; 188(2): 343-352, 2018 02.
Article in English | MEDLINE | ID: mdl-29154962

ABSTRACT

Diabetic kidney disease and atherosclerotic disease are major causes of morbidity and mortality associated with type 2 diabetes (T2D), and diabetic kidney disease is a major cardiovascular risk factor. The black and tan, brachyury (BTBR) mouse strain with leptin deficiency (Lepob) has emerged as one of the best models of human diabetic kidney disease. However, no T2D mouse model of combined diabetic kidney disease and atherosclerosis exists. Our goal was to generate such a model. To this end, the low-density lipoprotein (LDL) receptor was targeted for degradation via inducible degrader of the LDL receptor (IDOL) overexpression, using liver-targeted adenoassociated virus serotype DJ/8 (AAV-DJ/8) in BTBR wild-type and BTBR Lepob mice. Liver-targeted IDOL-AAV-DJ/8 increased plasma LDL cholesterol compared with the control enhanced green fluorescent protein AAV-DJ/8. IDOL-induced dyslipidemia caused formation of atherosclerotic lesions of an intermediate stage, which contained both macrophages and smooth muscle cells. BTBR Lepob mice exhibited diabetic kidney disease. IDOL-induced dyslipidemia worsened albuminuria and glomerular macrophage accumulation but had no effect on mesangial expansion or podocyte numbers. Thus, by inducing hepatic degradation of the LDL receptor, we generated a T2D model of combined kidney disease and atherosclerosis. This model provides a new tool to study mechanisms, interactions, and treatment strategies of kidney disease and atherosclerosis in T2D.


Subject(s)
Atherosclerosis/etiology , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Type 2/complications , Diabetic Nephropathies/etiology , Animals , Atherosclerosis/blood , Atherosclerosis/pathology , Cholesterol/blood , Dependovirus/genetics , Diabetes Mellitus, Experimental/blood , Diabetes Mellitus, Type 2/blood , Diabetic Nephropathies/blood , Disease Models, Animal , Dyslipidemias/blood , Dyslipidemias/complications , Genetic Vectors , Male , Mice, Inbred C57BL , Mice, Obese , Receptors, LDL/biosynthesis , Receptors, LDL/deficiency , Receptors, LDL/genetics
8.
Biotechnol Bioeng ; 92(4): 492-500, 2005 Nov 20.
Article in English | MEDLINE | ID: mdl-16080186

ABSTRACT

Reliable control over the process of cell differentiation is a major challenge in moving stem cell-based therapies forward. The composition of the extracellular matrix (ECM) is known to play an important role in modulating differentiation. We have developed a system to encapsulate adult human mesenchymal stem cells (hMSC) within spherical three-dimensional (3D) microenvironments consisting of a defined mixture of collagen Type I and agarose polymers. These protein-based beads were produced by emulsification of liquid hMSC-matrix suspensions in a silicone fluid phase and subsequent gelation to form hydrogel beads, which were collected by centrifugation and placed in culture. Bead size and size distribution could be varied by changing the encapsulation parameters (impeller speed and blade separation), and beads in the range of 30-150 microns in diameter were reliably produced. Collagen concentrations up to 40% (wt/wt) could be incorporated into the bead matrix. Visible light and fluorescence microscopy confirmed that the collagen matrix was uniformly distributed throughout the beads. Cell viability post-encapsulation was in the range of 75-90% for all bead formulations (similar to control slab gels) and remained at this level for 8 days in culture. Fluorescent staining of the actin cytoskeleton revealed that hMSC spreading increased with increasing collagen concentration. This system of producing 3D microenvironments of defined matrix composition therefore offers a way to control cell-matrix interactions and thereby guide hMSC differentiation. The bead format allows the use of small amounts of matrix proteins, and such beads can potentially be used as a cell delivery vehicle in tissue repair applications.


Subject(s)
Cell Differentiation , Collagen Type I , Mesenchymal Stem Cells/physiology , Osteoblasts/physiology , Sepharose , Tissue Engineering , Cell Survival , Cells, Cultured , Cells, Immobilized/cytology , Cells, Immobilized/physiology , Humans , Mesenchymal Stem Cells/cytology , Microscopy, Fluorescence/methods , Osteoblasts/cytology , Tissue Engineering/methods
9.
J Biomed Biotechnol ; 2004(1): 24-34, 2004.
Article in English | MEDLINE | ID: mdl-15123885

ABSTRACT

The mechanisms controlling human mesenchymal stem cells (hMSC) differentiation are not entirely understood. We hypothesized that the contact with extracellular matrix (ECM) proteins normally found in bone marrow would promote osteogenic differentiation of hMSC in vitro. To test this hypothesis, we cultured hMSC on purified ECM proteins in the presence or absence of soluble osteogenic supplements, and assayed for the presence of well-established differentiation markers (production of mineralized matrix, osteopontin, osteocalcin, collagen I, and alkaline phosphatase expression) over a 16-day time course. We found that hMSC adhere to ECM proteins with varying affinity (fibronectin > collagen I >/= collagen IV >/= vitronectin > laminin-1) and through distinct integrin receptors. Importantly, the greatest osteogenic differentiation occurred in cells plated on vitronectin and collagen I and almost no differentiation took place on fibronectin or uncoated plates. We conclude that the contact with vitronectin and collagen I promotes the osteogenic differentiation of hMSC, and that ECM contact alone may be sufficient to induce differentiation in these cells.

SELECTION OF CITATIONS
SEARCH DETAIL
...