Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Anal Chem ; 93(48): 16076-16085, 2021 12 07.
Article in English | MEDLINE | ID: mdl-34812602

ABSTRACT

Ultraviolet-visible (UV-Vis) absorption spectra are routinely collected as part of high-performance liquid chromatography (HPLC) analysis systems and can be used to identify chemical reaction products by comparison to the reference spectra. Here, we present UV-adVISor as a new computational tool for predicting the UV-Vis spectra from a molecule's structure alone. UV-Vis prediction was approached as a sequence-to-sequence problem. We utilized Long-Short Term Memory and attention-based neural networks with Extended Connectivity Fingerprint Diameter 6 or molecule SMILES to generate predictive models for the UV spectra. We have produced two spectrum datasets (dataset I, N = 949, and dataset II, N = 2222) using different compound collections and spectrum acquisition methods to train, validate, and test our models. We evaluated the prediction accuracy of the complete spectra by the correspondence of wavelengths of absorbance maxima and with a series of statistical measures (the best test set median model parameters are in parentheses for model II), including RMSE (0.064), R2 (0.71), and dynamic time warping (DTW, 0.194) of the entire spectrum curve. Scrambling molecule structures with the experimental spectra during training resulted in a degraded R2, confirming the utility of the approaches for prediction. UV-adVISor is able to provide fast and accurate predictions for libraries of compounds.


Subject(s)
Light , Neural Networks, Computer , Chromatography, High Pressure Liquid
2.
J Chem Inf Model ; 61(6): 2641-2647, 2021 06 28.
Article in English | MEDLINE | ID: mdl-34032436

ABSTRACT

The growing quantity of public and private data sets focused on small molecules screened against biological targets or whole organisms provides a wealth of drug discovery relevant data. This is matched by the availability of machine learning algorithms such as Support Vector Machines (SVM) and Deep Neural Networks (DNN) that are computationally expensive to perform on very large data sets with thousands of molecular descriptors. Quantum computer (QC) algorithms have been proposed to offer an approach to accelerate quantum machine learning over classical computer (CC) algorithms, however with significant limitations. In the case of cheminformatics, which is widely used in drug discovery, one of the challenges to overcome is the need for compression of large numbers of molecular descriptors for use on a QC. Here, we show how to achieve compression with data sets using hundreds of molecules (SARS-CoV-2) to hundreds of thousands of molecules (whole cell screening data sets for plague and M. tuberculosis) with SVM and the data reuploading classifier (a DNN equivalent algorithm) on a QC benchmarked against CC and hybrid approaches. This study illustrates the steps needed in order to be "quantum computer ready" in order to apply quantum computing to drug discovery and to provide the foundation on which to build this field.


Subject(s)
COVID-19 , Drug Discovery , Algorithms , Computing Methodologies , Humans , Machine Learning , Quantum Theory , SARS-CoV-2 , Support Vector Machine
SELECTION OF CITATIONS
SEARCH DETAIL