Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 1849, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38418832

ABSTRACT

The hippocampus and entorhinal cortex exhibit rich oscillatory patterns critical for cognitive functions. In the hippocampal region CA1, specific gamma-frequency oscillations, timed at different phases of the ongoing theta rhythm, are hypothesized to facilitate the integration of information from varied sources and contribute to distinct cognitive processes. Here, we show that gamma elements -a multidimensional characterization of transient gamma oscillatory episodes- occur at any frequency or phase relative to the ongoing theta rhythm across all CA1 layers in male mice. Despite their low power and stochastic-like nature, individual gamma elements still carry behavior-related information and computational modeling suggests that they reflect neuronal firing. Our findings challenge the idea of rigid gamma sub-bands, showing that behavior shapes ensembles of irregular gamma elements that evolve with learning and depend on hippocampal layers. Widespread gamma diversity, beyond randomness, may thus reflect complexity, likely functional but invisible to classic average-based analyses.


Subject(s)
Hippocampus , Neurons , Male , Mice , Animals , Hippocampus/physiology , Neurons/physiology , Entorhinal Cortex/physiology , Theta Rhythm/physiology , Computer Simulation , Gamma Rhythm/physiology , CA1 Region, Hippocampal/physiology
2.
J Neurosci ; 44(2)2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38050070

ABSTRACT

It is challenging to measure how specific aspects of coordinated neural dynamics translate into operations of information processing and, ultimately, cognitive functions. An obstacle is that simple circuit mechanisms-such as self-sustained or propagating activity and nonlinear summation of inputs-do not directly give rise to high-level functions. Nevertheless, they already implement simple the information carried by neural activity. Here, we propose that distinct functions, such as stimulus representation, working memory, or selective attention, stem from different combinations and types of low-level manipulations of information or information processing primitives. To test this hypothesis, we combine approaches from information theory with simulations of multi-scale neural circuits involving interacting brain regions that emulate well-defined cognitive functions. Specifically, we track the information dynamics emergent from patterns of neural dynamics, using quantitative metrics to detect where and when information is actively buffered, transferred or nonlinearly merged, as possible modes of low-level processing (storage, transfer and modification). We find that neuronal subsets maintaining representations in working memory or performing attentional gain modulation are signaled by their boosted involvement in operations of information storage or modification, respectively. Thus, information dynamic metrics, beyond detecting which network units participate in cognitive processing, also promise to specify how and when they do it, that is, through which type of primitive computation, a capability that may be exploited for the analysis of experimental recordings.


Subject(s)
Brain , Cognition , Cognition/physiology , Brain/physiology , Memory, Short-Term/physiology , Attention/physiology , Neurons/physiology
3.
Netw Neurosci ; 7(4): 1420-1451, 2023.
Article in English | MEDLINE | ID: mdl-38144688

ABSTRACT

Spontaneous activity during the resting state, tracked by BOLD fMRI imaging, or shortly rsfMRI, gives rise to brain-wide dynamic patterns of interregional correlations, whose structured flexibility relates to cognitive performance. Here, we analyze resting-state dynamic functional connectivity (dFC) in a cohort of older adults, including amnesic mild cognitive impairment (aMCI, N = 34) and Alzheimer's disease (AD, N = 13) patients, as well as normal control (NC, N = 16) and cognitively "supernormal" controls (SNC, N = 10) subjects. Using complementary state-based and state-free approaches, we find that resting-state fluctuations of different functional links are not independent but are constrained by high-order correlations between triplets or quadruplets of functionally connected regions. When contrasting patients with healthy subjects, we find that dFC between cingulate and other limbic regions is increasingly bursty and intermittent when ranking the four groups from SNC to NC, aMCI and AD. Furthermore, regions affected at early stages of AD pathology are less involved in higher order interactions in patient than in control groups, while pairwise interactions are not significantly reduced. Our analyses thus suggest that the spatiotemporal complexity of dFC organization is precociously degraded in AD and provides a richer window into the underlying neurobiology than time-averaged FC connections.

4.
J Neurosci ; 43(49): 8472-8486, 2023 12 06.
Article in English | MEDLINE | ID: mdl-37845035

ABSTRACT

Beta-band (13-35 Hz) modulations following reward, task outcome feedback, and error have been described in cognitive and/or motor adaptation tasks. Observations from different studies are, however, difficult to conciliate. Among the studies that used cognitive response selection tasks, several reported an increase in beta-band activity following reward, whereas others observed increased beta power after negative feedback. Moreover, in motor adaptation tasks, an attenuation of the postmovement beta rebound follows a movement execution error induced by visual or mechanical perturbations. Given that kinematic error typically leads to negative task-outcome feedback (e.g., target missed), one may wonder how contradictory modulations, beta power decrease with movement error versus beta power increase with negative feedback, may coexist. We designed a motor adaptation task in which female and male participants experience varied feedbacks-binary success/failure feedback, kinematic error, and sensory-prediction error-and demonstrate that beta-band modulations in opposite directions coexist at different spatial locations, time windows, and frequency ranges. First, high beta power in the medial frontal cortex showed opposite modulations well separated in time when compared in success and failure trials; that is, power was higher in success trials just after the binary success feedback, whereas it was lower in the postmovement period compared with failure trials. Second, although medial frontal high-beta activity was sensitive to task outcome, low-beta power in the medial parietal cortex was strongly attenuated following movement execution error but was not affected by either the outcome of the task or sensory-prediction error. These findings suggest that medial beta activity in different spatio-temporal-spectral configurations play a multifaceted role in encoding qualitatively distinct feedback signals.SIGNIFICANCE STATEMENT Beta-band activity reflects neural processes well beyond sensorimotor functions, including cognition and motivation. By disentangling alternative spatio-temporal-spectral patterns of possible beta-oscillatory activity, we reconcile a seemingly discrepant literature. First, high-beta power in the medial frontal cortex showed opposite modulations separated in time in success and failure trials; power was higher in success trials just after success feedback and lower in the postmovement period compared with failure trials. Second, although medial frontal high-beta activity was sensitive to task outcome, low-beta power in the medial parietal cortex was strongly attenuated following movement execution error but was not affected by the task outcome or the sensory-prediction error. We propose that medial beta activity reflects distinct feedback signals depending on its anatomic location, time window, and frequency range.


Subject(s)
Cognition , Psychomotor Performance , Humans , Male , Female , Feedback , Psychomotor Performance/physiology , Cognition/physiology , Sensation , Movement/physiology
5.
J Neurosci ; 43(38): 6573-6587, 2023 09 20.
Article in English | MEDLINE | ID: mdl-37550052

ABSTRACT

Comorbidities, such as cognitive deficits, which often accompany epilepsies, constitute a basal state, while seizures are rare and transient events. This suggests that neural dynamics, in particular those supporting cognitive function, are altered in a permanent manner in epilepsy. Here, we test the hypothesis that primitive processes of information processing at the core of cognitive function (i.e., storage and sharing of information) are altered in the hippocampus and the entorhinal cortex in experimental epilepsy in adult, male Wistar rats. We find that information storage and sharing are organized into substates across the stereotypic states of slow and theta oscillations in both epilepsy and control conditions. However, their internal composition and organization through time are disrupted in epilepsy, partially losing brain state selectivity compared with controls, and shifting toward a regimen of disorder. We propose that the alteration of information processing at this algorithmic level of computation, the theoretical intermediate level between structure and function, may be a mechanism behind the emergent and widespread comorbidities associated with epilepsy, and perhaps other disorders.SIGNIFICANCE STATEMENT Comorbidities, such as cognitive deficits, which often accompany epilepsies, constitute a basal state, while seizures are rare and transient events. This suggests that neural dynamics, in particular those supporting cognitive function, are altered in a permanent manner in epilepsy. Here, we show that basic processes of information processing at the core of cognitive function (i.e., storage and sharing of information) are altered in the hippocampus and the entorhinal cortex (two regions involved in memory processes) in experimental epilepsy. Such disruption of information processing at the algorithmic level itself could underlie the general performance impairments in epilepsy.


Subject(s)
Epilepsy , Rats , Animals , Male , Rats, Wistar , Seizures , Brain , Cognition , Hippocampus
6.
Sensors (Basel) ; 23(10)2023 May 17.
Article in English | MEDLINE | ID: mdl-37430760

ABSTRACT

Electrophysiology recordings are frequently affected by artifacts (e.g., subject motion or eye movements), which reduces the number of available trials and affects the statistical power. When artifacts are unavoidable and data are scarce, signal reconstruction algorithms that allow for the retention of sufficient trials become crucial. Here, we present one such algorithm that makes use of large spatiotemporal correlations in neural signals and solves the low-rank matrix completion problem, to fix artifactual entries. The method uses a gradient descent algorithm in lower dimensions to learn the missing entries and provide faithful reconstruction of signals. We carried out numerical simulations to benchmark the method and estimate optimal hyperparameters for actual EEG data. The fidelity of reconstruction was assessed by detecting event-related potentials (ERP) from a highly artifacted EEG time series from human infants. The proposed method significantly improved the standardized error of the mean in ERP group analysis and a between-trial variability analysis compared to a state-of-the-art interpolation technique. This improvement increased the statistical power and revealed significant effects that would have been deemed insignificant without reconstruction. The method can be applied to any time-continuous neural signal where artifacts are sparse and spread out across epochs and channels, increasing data retention and statistical power.


Subject(s)
Artifacts , Learning , Infant , Humans , Algorithms , Benchmarking , Eye Movements
7.
Neuroimage ; 276: 120208, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37268095

ABSTRACT

In carefully designed experimental paradigms, cognitive scientists interpret the mean event-related potentials (ERP) in terms of cognitive operations. However, the huge signal variability from one trial to the next, questions the representability of such mean events. We explored here whether this variability is an unwanted noise, or an informative part of the neural response. We took advantage of the rapid changes in the visual system during human infancy and analyzed the variability of visual responses to central and lateralized faces in 2-to 6-month-old infants compared to adults using high-density electroencephalography (EEG). We observed that neural trajectories of individual trials always remain very far from ERP components, only moderately bending their direction with a substantial temporal jitter across trials. However, single trial trajectories displayed characteristic patterns of acceleration and deceleration when approaching ERP components, as if they were under the active influence of steering forces causing transient attraction and stabilization. These dynamic events could only partly be accounted for by induced microstate transitions or phase reset phenomena. Importantly, these structured modulations of response variability, both between and within trials, had a rich sequential organization, which in infants, was modulated by the task difficulty and age. Our approaches to characterize Event Related Variability (ERV) expand on classic ERP analyses and provide the first evidence for the functional role of ongoing neural variability in human infants.


Subject(s)
Electroencephalography , Evoked Potentials , Adult , Infant , Humans , Evoked Potentials/physiology
8.
Nat Commun ; 13(1): 580, 2022 01 31.
Article in English | MEDLINE | ID: mdl-35102165

ABSTRACT

The cerebellar cortex encodes sensorimotor adaptation during skilled locomotor behaviors, however the precise relationship between synaptic connectivity and behavior is unclear. We studied synaptic connectivity between granule cells (GCs) and Purkinje cells (PCs) in murine acute cerebellar slices using photostimulation of caged glutamate combined with patch-clamp in developing or after mice adapted to different locomotor contexts. By translating individual maps into graph network entities, we found that synaptic maps in juvenile animals undergo critical period characterized by dissolution of their structure followed by the re-establishment of a patchy functional organization in adults. Although, in adapted mice, subdivisions in anatomical microzones do not fully account for the observed spatial map organization in relation to behavior, we can discriminate locomotor contexts with high accuracy. We also demonstrate that the variability observed in connectivity maps directly accounts for motor behavior traits at the individual level. Our findings suggest that, beyond general motor contexts, GC-PC networks also encode internal models underlying individual-specific motor adaptation.


Subject(s)
Adaptation, Psychological/physiology , Behavior, Animal/physiology , Cerebellum/physiology , Nerve Net/physiology , Animals , Animals, Newborn , Male , Mice , Motor Activity/physiology , Purkinje Cells/physiology , Synapses/physiology
9.
Front Behav Neurosci ; 16: 811278, 2022.
Article in English | MEDLINE | ID: mdl-35177972

ABSTRACT

The hippocampal formation is one of the brain systems in which the functional roles of coordinated oscillations in information representation and communication are better studied. Within this circuit, neuronal oscillations are conceived as a mechanism to precisely coordinate upstream and downstream neuronal ensembles, underlying dynamic exchange of information. Within a global reference framework provided by theta (θ) oscillations, different gamma-frequency (γ) carriers would temporally segregate information originating from different sources, thereby allowing networks to disambiguate convergent inputs. Two γ sub-bands were thus defined according to their frequency (slow γ, 30-80 Hz; medium γ, 60-120 Hz) and differential power distribution across CA1 dendritic layers. According to this prevalent model, layer-specific γ oscillations in CA1 would reliably identify the temporal dynamics of afferent inputs and may therefore aid in identifying specific memory processes (encoding for medium γ vs. retrieval for slow γ). However, this influential view, derived from time-averages of either specific γ sub-bands or different projection methods, might not capture the complexity of CA1 θ-γ interactions. Recent studies investigating γ oscillations at the θ cycle timescale have revealed a more dynamic and diverse landscape of θ-γ motifs, with many θ cycles containing multiple γ bouts of various frequencies. To properly capture the hippocampal oscillatory complexity, we have argued in this review that we should consider the entirety of the data and its multidimensional complexity. This will call for a revision of the actual model and will require the use of new tools allowing the description of individual γ bouts in their full complexity.

10.
Aging Brain ; 2: 100042, 2022.
Article in English | MEDLINE | ID: mdl-36908877

ABSTRACT

A critical challenge in current research on Alzheimer's disease (AD) is to clarify the relationship between network dysfunction and the emergence of subtle memory deficits in itspreclinical stage. The AppNL-F/MAPT double knock-in (dKI) model with humanized ß-amyloid peptide (Aß) and tau was used to investigate both memory and network dysfunctions at an early stage. Young male dKI mice (2 to 6 months) were tested in three tasks taxing different aspects of recognition memory affected in preclinical AD. An early deficit first appeared in the object-place association task at the age of 4 months, when increased levels of ß-CTF and Aß were detected in both the hippocampus and the medial temporal cortex, and tau pathology was found only in the medial temporal cortex. Object-place task-dependent c-Fos activation was then analyzed in 22 subregions across the medial prefrontal cortex, claustrum, retrosplenial cortex, and medial temporal lobe. Increased c-Fos activation was detected in the entorhinal cortex and the claustrum of dKI mice. During recall, network efficiency was reduced across cingulate regions with a major disruption of information flow through the retrosplenial cortex. Our findings suggest that early perirhinal-entorhinal pathology is associated with abnormal activity which may spread to downstream regions such as the claustrum, the medial prefrontal cortex and ultimately the key retrosplenial hub which relays information from frontal to temporal lobes. The similarity between our findings and those reported in preclinical stages of AD suggests that the AppNL-F/MAPT dKI model has a high potential for providing key insights into preclinical AD.

11.
Neuroimage Clin ; 32: 102844, 2021.
Article in English | MEDLINE | ID: mdl-34653839

ABSTRACT

Flexibility is a key feature of psychological health, allowing the individual to dynamically adapt to changing environmental demands, which is impaired in many psychiatric disorders like obsessive-compulsive disorder (OCD). Adequately responding to varying demands requires the brain to switch between different patterns of neural activity, which are represented by different brain network configurations (functional connectivity patterns). Here, we operationalize neural flexibility as the dissimilarity between consecutive connectivity matrices of brain regions (jump length). In total, 132 fMRI scans were obtained from 17 patients that were scanned four to five times during inpatient psychotherapy, and from 17 controls that were scanned at comparable time intervals. Significant negative correlations were found between the jump lengths and the symptom severity scores of OCD, depression, anxiety, and stress, suggesting that high symptom severity corresponds to inflexible brain functioning. Further analyses revealed that impaired reconfiguration (pattern stability) of the brain seems to be more related to general psychiatric impairment rather than to specific symptoms, e.g., of OCD or depression. Importantly, the group × time interaction of a repeated measures ANOVA was significant, as well as the post-hoc paired t-tests of the patients (first vs. last scan). The results suggest that psychotherapy is able to significantly increase the neural flexibility of patients. We conclude that psychiatric symptoms like anxiety, stress, depression, and OCD are associated with an impaired adaptivity of the brain. In general, our results add to the growing evidence that dynamic functional connectivity captures meaningful properties of brain functioning.


Subject(s)
Obsessive-Compulsive Disorder , Brain/diagnostic imaging , Brain Mapping , Humans , Magnetic Resonance Imaging , Neural Pathways , Obsessive-Compulsive Disorder/diagnostic imaging , Obsessive-Compulsive Disorder/therapy , Psychotherapy
12.
J R Soc Interface ; 18(183): 20210486, 2021 10.
Article in English | MEDLINE | ID: mdl-34665977

ABSTRACT

The relationship between network structure and dynamics is one of the most extensively investigated problems in the theory of complex systems of recent years. Understanding this relationship is of relevance to a range of disciplines-from neuroscience to geomorphology. A major strategy of investigating this relationship is the quantitative comparison of a representation of network architecture (structural connectivity, SC) with a (network) representation of the dynamics (functional connectivity, FC). Here, we show that one can distinguish two classes of functional connectivity-one based on simultaneous activity (co-activity) of nodes, the other based on sequential activity of nodes. We delineate these two classes in different categories of dynamical processes-excitations, regular and chaotic oscillators-and provide examples for SC/FC correlations of both classes in each of these models. We expand the theoretical view of the SC/FC relationships, with conceptual instances of the SC and the two classes of FC for various application scenarios in geomorphology, ecology, systems biology, neuroscience and socio-ecological systems. Seeing the organisation of dynamical processes in a network either as governed by co-activity or by sequential activity allows us to bring some order in the myriad of observations relating structure and function of complex networks.


Subject(s)
Ecology , Ecosystem , Brain
13.
eNeuro ; 8(4)2021.
Article in English | MEDLINE | ID: mdl-34045210

ABSTRACT

Large neuroimaging datasets, including information about structural connectivity (SC) and functional connectivity (FC), play an increasingly important role in clinical research, where they guide the design of algorithms for automated stratification, diagnosis or prediction. A major obstacle is, however, the problem of missing features [e.g., lack of concurrent DTI SC and resting-state functional magnetic resonance imaging (rsfMRI) FC measurements for many of the subjects]. We propose here to address the missing connectivity features problem by introducing strategies based on computational whole-brain network modeling. Using two datasets, the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset and a healthy aging dataset, for proof-of-concept, we demonstrate the feasibility of virtual data completion (i.e., inferring "virtual FC" from empirical SC or "virtual SC" from empirical FC), by using self-consistent simulations of linear and nonlinear brain network models. Furthermore, by performing machine learning classification (to separate age classes or control from patient subjects), we show that algorithms trained on virtual connectomes achieve discrimination performance comparable to when trained on actual empirical data; similarly, algorithms trained on virtual connectomes can be used to successfully classify novel empirical connectomes. Completion algorithms can be combined and reiterated to generate realistic surrogate connectivity matrices in arbitrarily large number, opening the way to the generation of virtual connectomic datasets with network connectivity information comparable to the one of the original data.


Subject(s)
Alzheimer Disease , Connectome , Alzheimer Disease/diagnostic imaging , Brain/diagnostic imaging , Humans , Magnetic Resonance Imaging , Neuroimaging
14.
MethodsX ; 7: 101168, 2020.
Article in English | MEDLINE | ID: mdl-33344179

ABSTRACT

•We have developed a framework to describe the dynamics of Functional Connectivity (dFC) estimated from brain activity time-series as a complex random walk in the space of possible functional networks. This conceptual and methodological framework considers dFC as a smooth reconfiguration process, combining "liquid" and "coordinated" aspects. Unlike other previous approaches, our method does not require the explicit extraction of discrete connectivity states.•In our previous work, we introduced several metrics for the quantitative characterization of the dFC random walk. First, dFC speed analyses extract the distribution of the time-resolved rate of reconfiguration of FC along time. These distributions have a clear peak (typical dFC speed, that can already serve as a biomarker) and fat tails (denoting deviations from Gaussianity that can be detected by suitable scaling analyses of FC network streams). Second, meta-connectivity (MC) analyses identify groups of functional links whose fluctuations co-vary in time and that define veritable dFC modules organized along specific dFC meta-hub controllers (differing from conventional FC modules and hubs). The decomposition of whole-brain dFC by MC allows performing dFC speed analyses separately for each of the detected dFC modules.•We present here blocks and pipelines for dFC random walk analyses that are made easily available through a dedicated MATLABⓇ toolbox (dFCwalk), openly downloadable. Although we applied such analyses mostly to fMRI resting state data, in principle our methods can be extended to any type of neural activity (from Local Field Potentials to EEG, MEG, fNIRS, etc.) or even non-neural time-series.

15.
PLoS Comput Biol ; 16(9): e1008144, 2020 09.
Article in English | MEDLINE | ID: mdl-32886673

ABSTRACT

At the macroscale, the brain operates as a network of interconnected neuronal populations, which display coordinated rhythmic dynamics that support interareal communication. Understanding how stimulation of different brain areas impacts such activity is important for gaining basic insights into brain function and for further developing therapeutic neurmodulation. However, the complexity of brain structure and dynamics hinders predictions regarding the downstream effects of focal stimulation. More specifically, little is known about how the collective oscillatory regime of brain network activity-in concert with network structure-affects the outcomes of perturbations. Here, we combine human connectome data and biophysical modeling to begin filling these gaps. By tuning parameters that control collective system dynamics, we identify distinct states of simulated brain activity and investigate how the distributed effects of stimulation manifest at different dynamical working points. When baseline oscillations are weak, the stimulated area exhibits enhanced power and frequency, and due to network interactions, activity in this excited frequency band propagates to nearby regions. Notably, beyond these linear effects, we further find that focal stimulation causes more distributed modifications to interareal coherence in a band containing regions' baseline oscillation frequencies. Importantly, depending on the dynamical state of the system, these broadband effects can be better predicted by functional rather than structural connectivity, emphasizing a complex interplay between anatomical organization, dynamics, and response to perturbation. In contrast, when the network operates in a regime of strong regional oscillations, stimulation causes only slight shifts in power and frequency, and structural connectivity becomes most predictive of stimulation-induced changes in network activity patterns. In sum, this work builds upon and extends previous computational studies investigating the impacts of stimulation, and underscores the fact that both the stimulation site, and, crucially, the regime of brain network dynamics, can influence the network-wide responses to local perturbations.


Subject(s)
Brain/physiology , Connectome , Models, Neurological , Humans , Neurons/physiology
16.
PLoS Comput Biol ; 16(7): e1007686, 2020 07.
Article in English | MEDLINE | ID: mdl-32735580

ABSTRACT

The capability of cortical regions to flexibly sustain an "ignited" state of activity has been discussed in relation to conscious perception or hierarchical information processing. Here, we investigate how the intrinsic propensity of different regions to get ignited is determined by the specific topological organisation of the structural connectome. More specifically, we simulated the resting-state dynamics of mean-field whole-brain models and assessed how dynamic multistability and ignition differ between a reference model embedding a realistic human connectome, and alternative models based on a variety of randomised connectome ensembles. We found that the strength of global excitation needed to first trigger ignition in a subset of regions is substantially smaller for the model embedding the empirical human connectome. Furthermore, when increasing the strength of excitation, the propagation of ignition outside of this initial core-which is able to self-sustain its high activity-is way more gradual than for any of the randomised connectomes, allowing for graded control of the number of ignited regions. We explain both these assets in terms of the exceptional weighted core-shell organisation of the empirical connectome, speculating that this topology of human structural connectivity may be attuned to support enhanced ignition dynamics.


Subject(s)
Cerebral Cortex , Connectome/methods , Algorithms , Cerebral Cortex/anatomy & histology , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/physiology , Computational Biology , Humans , Magnetic Resonance Imaging , Male
17.
Neuroimage ; 222: 117155, 2020 11 15.
Article in English | MEDLINE | ID: mdl-32736002

ABSTRACT

Dynamic Functional Connectivity (dFC) in the resting state (rs) is considered as a correlate of cognitive processing. Describing dFC as a flow across morphing connectivity configurations, our notion of dFC speed quantifies the rate at which FC networks evolve in time. Here we probe the hypothesis that variations of rs dFC speed and cognitive performance are selectively interrelated within specific functional subnetworks. In particular, we focus on Sleep Deprivation (SD) as a reversible model of cognitive dysfunction. We found that whole-brain level (global) dFC speed significantly slows down after 24h of SD. However, the reduction in global dFC speed does not correlate with variations of cognitive performance in individual tasks, which are subtle and highly heterogeneous. On the contrary, we found strong correlations between performance variations in individual tasks -including Rapid Visual Processing (RVP, assessing sustained visual attention)- and dFC speed quantified at the level of functional sub-networks of interest. Providing a compromise between classic static FC (no time) and global dFC (no space), modular dFC speed analyses allow quantifying a different speed of dFC reconfiguration independently for sub-networks overseeing different tasks. Importantly, we found that RVP performance robustly correlates with the modular dFC speed of a characteristic frontoparietal module.


Subject(s)
Attention/physiology , Brain/physiopathology , Cognitive Dysfunction/physiopathology , Connectome , Memory, Short-Term/physiology , Nerve Net/physiopathology , Psychomotor Performance/physiology , Sleep Deprivation/physiopathology , Visual Perception/physiology , Adult , Brain/diagnostic imaging , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/etiology , Humans , Male , Nerve Net/diagnostic imaging , Sleep Deprivation/diagnostic imaging , Time Factors
18.
Neuroimage ; 222: 117156, 2020 11 15.
Article in English | MEDLINE | ID: mdl-32698027

ABSTRACT

Functional Connectivity (FC) during resting-state or task conditions is not static but inherently dynamic. Yet, there is no consensus on whether fluctuations in FC may resemble isolated transitions between discrete FC states rather than continuous changes. This quarrel hampers advancing the study of dynamic FC. This is unfortunate as the structure of fluctuations in FC can certainly provide more information about developmental changes, aging, and progression of pathologies. We merge the two perspectives and consider dynamic FC as an ongoing network reconfiguration, including a stochastic exploration of the space of possible steady FC states. The statistical properties of this random walk deviate both from a purely "order-driven" dynamics, in which the mean FC is preserved, and from a purely "randomness-driven" scenario, in which fluctuations of FC remain uncorrelated over time. Instead, dynamic FC has a complex structure endowed with long-range sequential correlations that give rise to transient slowing and acceleration epochs in the continuous flow of reconfiguration. Our analysis for fMRI data in healthy elderly revealed that dynamic FC tends to slow down and becomes less complex as well as more random with increasing age. These effects appear to be strongly associated with age-related changes in behavioural and cognitive performance.


Subject(s)
Aging/physiology , Brain/physiology , Connectome , Human Development/physiology , Magnetic Resonance Imaging , Nerve Net/physiology , Psychomotor Performance/physiology , Adolescent , Adult , Age Factors , Aged , Aged, 80 and over , Brain/diagnostic imaging , Female , Humans , Male , Middle Aged , Nerve Net/diagnostic imaging , Young Adult
19.
Netw Neurosci ; 4(3): 946-975, 2020.
Article in English | MEDLINE | ID: mdl-33615098

ABSTRACT

Neural computation is associated with the emergence, reconfiguration, and dissolution of cell assemblies in the context of varying oscillatory states. Here, we describe the complex spatiotemporal dynamics of cell assemblies through temporal network formalism. We use a sliding window approach to extract sequences of networks of information sharing among single units in hippocampus and entorhinal cortex during anesthesia and study how global and node-wise functional connectivity properties evolve through time and as a function of changing global brain state (theta vs. slow-wave oscillations). First, we find that information sharing networks display, at any time, a core-periphery structure in which an integrated core of more tightly functionally interconnected units links to more loosely connected network leaves. However the units participating to the core or to the periphery substantially change across time windows, with units entering and leaving the core in a smooth way. Second, we find that discrete network states can be defined on top of this continuously ongoing liquid core-periphery reorganization. Switching between network states results in a more abrupt modification of the units belonging to the core and is only loosely linked to transitions between global oscillatory states. Third, we characterize different styles of temporal connectivity that cells can exhibit within each state of the sharing network. While inhibitory cells tend to be central, we show that, otherwise, anatomical localization only poorly influences the patterns of temporal connectivity of the different cells. Furthermore, cells can change temporal connectivity style when the network changes state. Altogether, these findings reveal that the sharing of information mediated by the intrinsic dynamics of hippocampal and entorhinal cortex cell assemblies have a rich spatiotemporal structure, which could not have been identified by more conventional time- or state-averaged analyses of functional connectivity.

20.
Sci Adv ; 5(6): eaax4843, 2019 06.
Article in English | MEDLINE | ID: mdl-31249875

ABSTRACT

Neural computation occurs within large neuron networks in the dynamic context of varying brain states. Whether functions are performed by specific subsets of neurons and whether they occur in specific dynamical regimes remain poorly understood. Using high-density recordings in the hippocampus, medial entorhinal, and medial prefrontal cortex of the rat, we identify computing substates where specific computing hub neurons perform well-defined storage and sharing operations in a brain state-dependent manner. We retrieve distinct computing substates within each global brain state, such as REM and nonREM sleep. Half of recorded neurons act as computing hubs in at least one substate, suggesting that functional roles are not hardwired but reassigned at the second time scale. We identify sequences of substates whose temporal organization is dynamic and stands between order and disorder. We propose that global brain states constrain the language of neuronal computations by regulating the syntactic complexity of substate sequences.


Subject(s)
Cerebral Cortex/physiology , Hippocampus/physiology , Animals , Male , Neural Pathways/physiology , Neurons/physiology , Rats , Rats, Sprague-Dawley , Rats, Wistar , Sleep/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...