Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Parasit Vectors ; 13(1): 598, 2020 Nov 27.
Article in English | MEDLINE | ID: mdl-33246493

ABSTRACT

BACKGROUND: Larvae of the Australian sheep blowfly, Lucilia cuprina, parasitise sheep by feeding on skin excretions, dermal tissue and blood, causing severe damage known as flystrike or myiasis. Recent advances in -omic technologies and bioinformatic data analyses have led to a greater understanding of blowfly biology and should allow the identification of protein families involved in host-parasite interactions and disease. Current literature suggests that proteins of the SCP (Sperm-Coating Protein)/TAPS (Tpx-1/Ag5/PR-1/Sc7) (SCP/TAPS) superfamily play key roles in immune modulation, cross-talk between parasite and host as well as developmental and reproductive processes in parasites. METHODS: Here, we employed a bioinformatics workflow to curate the SCP/TAPS protein gene family in L. cuprina. Protein sequence, the presence and number of conserved CAP-domains and phylogeny were used to group identified SCP/TAPS proteins; these were compared to those found in Drosophila melanogaster to make functional predictions. In addition, transcription levels of SCP/TAPS protein-encoding genes were explored in different developmental stages. RESULTS: A total of 27 genes were identified as belonging to the SCP/TAPS gene family: encoding 26 single-domain proteins each with a single CAP domain and a solitary double-domain protein containing two conserved cysteine-rich secretory protein/antigen 5/pathogenesis related-1 (CAP) domains. Surprisingly, 16 SCP/TAPS predicted proteins formed an extended tandem array spanning a 53 kb region of one genomic region, which was confirmed by MinION long-read sequencing. RNA-seq data indicated that these 16 genes are highly transcribed in all developmental stages (excluding the embryo). CONCLUSIONS: Future work should assess the potential of selected SCP/TAPS proteins as novel targets for the control of L. cuprina and related parasitic flies of major socioeconomic importance.


Subject(s)
Diptera/genetics , Insect Proteins/chemistry , Insect Proteins/genetics , Myiasis/veterinary , Sheep Diseases/parasitology , Amino Acid Sequence , Animals , Australia , Diptera/chemistry , Diptera/growth & development , Diptera/metabolism , Female , Gene Amplification , Insect Proteins/metabolism , Male , Myiasis/parasitology , Phylogeny , Protein Domains , Sequence Alignment , Sheep
2.
Genome Biol ; 21(1): 15, 2020 01 23.
Article in English | MEDLINE | ID: mdl-31969194

ABSTRACT

BACKGROUND: Arthropods comprise the largest and most diverse phylum on Earth and play vital roles in nearly every ecosystem. Their diversity stems in part from variations on a conserved body plan, resulting from and recorded in adaptive changes in the genome. Dissection of the genomic record of sequence change enables broad questions regarding genome evolution to be addressed, even across hyper-diverse taxa within arthropods. RESULTS: Using 76 whole genome sequences representing 21 orders spanning more than 500 million years of arthropod evolution, we document changes in gene and protein domain content and provide temporal and phylogenetic context for interpreting these innovations. We identify many novel gene families that arose early in the evolution of arthropods and during the diversification of insects into modern orders. We reveal unexpected variation in patterns of DNA methylation across arthropods and examples of gene family and protein domain evolution coincident with the appearance of notable phenotypic and physiological adaptations such as flight, metamorphosis, sociality, and chemoperception. CONCLUSIONS: These analyses demonstrate how large-scale comparative genomics can provide broad new insights into the genotype to phenotype map and generate testable hypotheses about the evolution of animal diversity.


Subject(s)
Arthropods/genetics , Evolution, Molecular , Animals , Arthropods/classification , DNA Methylation , Genetic Speciation , Genetic Variation , Phylogeny
3.
J Res Adolesc ; 19(4): 762-785, 2009 Dec 01.
Article in English | MEDLINE | ID: mdl-25067896

ABSTRACT

The Risk Amplification and Abatement Model (RAAM), demonstrates that negative contact with socializing agents amplify risk, while positive contact abates risk for homeless adolescents. To test this model, the likelihood of exiting homelessness and returning to familial housing at 2 years and stably exiting over time are examined with longitudinal data collected from 183 newly homeless adolescents followed over 2 years in Los Angeles, CA. In support of RAAM, unadjusted odds of exiting at 2 years and stably exiting over2 years revealed that engagement with pro-social peers, maternal social support, and continued school attendance all promoted exiting behaviors. Simultaneously, exposure to family violence and reliance on shelter services discouraged stably exiting behaviors. Implications for family-based interventions are proposed.

4.
Int J Parasitol ; 32(5): 637-53, 2002 May.
Article in English | MEDLINE | ID: mdl-11943235

ABSTRACT

Chemotherapy is central to the control of many parasite infections of both medical and veterinary importance. However, control has been compromised by the emergence of drug resistance in several important parasite species. Such parasites cover a broad phylogenetic range and include protozoa, helminths and arthropods. In order to achieve effective parasite control in the future, the recognition and diagnosis of resistance will be crucial. This demand for early, accurate diagnosis of resistance to specific drugs in different parasite species can potentially be met by modern molecular techniques. This paper summarises the resistance status of a range of important parasites and reviews the available molecular techniques for resistance diagnosis. Opportunities for applying successes in some species to other species where resistance is less well understood are explored. The practical application of molecular techniques and the impact of the technology on improving parasite control are discussed.


Subject(s)
Antiparasitic Agents/pharmacology , Drug Resistance/genetics , Parasites/drug effects , Parasitic Sensitivity Tests/methods , Animals , Antiparasitic Agents/therapeutic use , Humans , Parasites/genetics , Parasitic Diseases/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL