Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 59
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 14610, 2024 06 25.
Article in English | MEDLINE | ID: mdl-38918594

ABSTRACT

Extracellular vesicles (EVs) are promising natural nanocarriers for the delivery of therapeutic agents. As with any other kind of cell, red blood cells (RBCs) produce a limited number of EVs under physiological and pathological conditions. Thus, RBC-derived extracellular vesicles (RBCEVs) have been recently suggested as next-generation delivery systems for therapeutic purposes. In this paper, we show that thanks to their unique biological and physicochemical features, RBCs can be efficiently pre-loaded with several kinds of molecules and further used to generate RBCEVs. A physical vesiculation method, based on "soft extrusion", was developed, producing an extremely high yield of cargo-loaded RBCEV mimetics. The RBCEVs population has been deeply characterized according to the new guidelines MISEV2023, showing great homogeneity in terms of size, biological features, membrane architecture and cargo. In vitro preliminary results demonstrated that RBCEVs are abundantly internalized by cells and exert peculiar biological effects. Indeed, efficient loading and delivery of miR-210 by RBCEVs to HUVEC has been proven, as well as the inhibition of a known mRNA target. Of note, the bench-scale process can be scaled-up and translated into clinics. In conclusion, this investigation could open the way to a new biomimetic platform for RNA-based therapies and/or other therapeutic cargoes useful in several diseases.


Subject(s)
Erythrocytes , Extracellular Vesicles , Human Umbilical Vein Endothelial Cells , MicroRNAs , Humans , Extracellular Vesicles/metabolism , Erythrocytes/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Human Umbilical Vein Endothelial Cells/metabolism , Drug Delivery Systems , Biomimetics/methods , RNA/metabolism
2.
Int J Mol Sci ; 24(21)2023 Nov 06.
Article in English | MEDLINE | ID: mdl-37958986

ABSTRACT

Gastric cancer, particularly adenocarcinoma, is a significant global health concern. Environmental risk factors, such as Helicobacter pylori infection and diet, play a role in its development. This study aimed to characterize the chemical composition and evaluate the in vitro antibacterial and antitumor activities of an Aristolochia olivieri Colleg. ex Boiss. Leaves' methanolic extract (AOME). Additionally, morphological changes in gastric cancer cell lines were analyzed. AOME was analyzed using HPLC-MS/MS, and its antibacterial activity against H. pylori was assessed using the broth microdilution method. MIC and MBC values were determined, and positive and negative controls were included in the evaluation. Anticancer effects were assessed through in vitro experiments using AGS, KATO-III, and SNU-1 cancer cell lines. The morphological changes were examined through SEM and TEM analyses. AOME contained several compounds, including caffeic acid, rutin, and hyperoside. The extract displayed significant antimicrobial effects against H. pylori, with consistent MIC and MBC values of 3.70 ± 0.09 mg/mL. AOME reduced cell viability in all gastric cancer cells in a dose- and time-dependent manner. Morphological analyses revealed significant ultrastructural changes in all tumor cell lines, suggesting the occurrence of cellular apoptosis. This study demonstrated that AOME possesses antimicrobial activity against H. pylori and potent antineoplastic properties in gastric cancer cell lines. AOME holds promise as a natural resource for innovative nutraceutical approaches in gastric cancer management. Further research and in vivo studies are warranted to validate its potential clinical applications.


Subject(s)
Aristolochia , Helicobacter Infections , Helicobacter pylori , Stomach Neoplasms , Humans , Stomach Neoplasms/drug therapy , Stomach Neoplasms/prevention & control , Stomach Neoplasms/metabolism , Helicobacter Infections/metabolism , Tandem Mass Spectrometry , Anti-Bacterial Agents/chemistry , Plant Extracts/chemistry , Gastric Mucosa/metabolism
3.
Int J Mol Sci ; 24(13)2023 Jun 21.
Article in English | MEDLINE | ID: mdl-37445630

ABSTRACT

Sickle cell disease (SCD) is caused by the homozygous beta-globin gene mutation that can lead to ischemic multi-organ damage and consequently reduce life expectancy. On the other hand, sickle cell trait (SCT), the heterozygous beta-globin gene mutation, is still considered a benign condition. Although the mechanisms are not well understood, clinical evidence has recently shown that specific pathological symptoms can also be recognized in SCT carriers. So far, there are still scant data regarding the morphological modifications referable to possible multi-organ damage in the SCT condition. Therefore, after genotypic and hematological characterization, by conventional light microscopy and transmission electron microscopy (TEM), we investigated the presence of tissue alterations in 13 heterozygous Townes mice, one of the best-known animal models that, up to now, was used only for the study of the homozygous condition. We found that endothelial alterations, as among which the thickening of vessel basal lamina, are ubiquitous in the lung, liver, kidney, and spleen of SCT carrier mice. The lung shows the most significant alterations, with a distortion of the general tissue architecture, while the heart is the least affected. Collectively, our findings contribute novel data to the histopathological modifications at microscopic and ultrastructural levels, underlying the heterozygous beta-globin gene mutation, and indicate the translational suitability of the Townes model to characterize the features of multiple organ involvement in the SCT carriers.


Subject(s)
Anemia, Sickle Cell , Sickle Cell Trait , Mice , Animals , Sickle Cell Trait/genetics , Disease Models, Animal , Anemia, Sickle Cell/genetics , Anemia, Sickle Cell/diagnosis , Kidney , beta-Globins/genetics
4.
Calcif Tissue Int ; 112(6): 666-674, 2023 06.
Article in English | MEDLINE | ID: mdl-36949181

ABSTRACT

Over the last decade, evidence has mounted for a prominent etiologic role of femoroacetabular impingement (FAI) in the development of early hip osteoarthritis (OA). The aim of this study was to compare the ultrastructure and tissue composition of the hip labrum in healthy and pathological conditions, as FAI and OA, to provide understanding of structural changes which might be helpful in the future to design targeted therapies and improve treatment indications. We analyzed labral tissue samples from five healthy multi-organ donors (MCDs) (median age, 38 years), five FAI patients (median age, 37 years) and five late-stage OA patients undergoing total hip replacement (median age, 56 years). We evaluated morpho-functional by histology and transmission electron microscopy. Extracellular matrix (ECM) structure changes were similar in specimens from FAI compared to those from patients with OA (more severe in the latter) showing disorganization of collagen fibers and increased proteoglycan content. In FAI and in OA nuclei the chromatin was condensed, organelle degenerated and cytoplasm vacuolized. Areas of calcification were mainly observed in FAI and OA labrum, as well as apoptotic-like features. We showed that labral tissue of patients with FAI had similar pathological alterations of tissue obtained from OA patients, suggesting that FAI patients might have high susceptibility to develop OA.


Subject(s)
Arthroplasty, Replacement, Hip , Calcinosis , Femoracetabular Impingement , Osteoarthritis, Hip , Humans , Adult , Middle Aged , Femoracetabular Impingement/pathology , Femoracetabular Impingement/surgery , Osteoarthritis, Hip/pathology , Arthroplasty, Replacement, Hip/adverse effects , Calcinosis/complications , Extracellular Matrix/pathology , Hip Joint/pathology , Hip Joint/surgery
5.
Front Immunol ; 13: 977617, 2022.
Article in English | MEDLINE | ID: mdl-36451814

ABSTRACT

Skeletal muscle holds an intrinsic capability of growth and regeneration both in physiological conditions and in case of injury. Chronic muscle illnesses, generally caused by genetic and acquired factors, lead to deconditioning of the skeletal muscle structure and function, and are associated with a significant loss in muscle mass. At the same time, progressive muscle wasting is a hallmark of aging. Given the paracrine properties of myogenic stem cells, extracellular vesicle-derived signals have been studied for their potential implication in both the pathogenesis of degenerative neuromuscular diseases and as a possible therapeutic target. In this study, we screened the content of extracellular vesicles from animal models of muscle hypertrophy and muscle wasting associated with chronic disease and aging. Analysis of the transcriptome, protein cargo, and microRNAs (miRNAs) allowed us to identify a hypertrophic miRNA signature amenable for targeting muscle wasting, consisting of miR-1 and miR-208a. We tested this signature among others in vitro on mesoangioblasts (MABs), vessel-associated adult stem cells, and we observed an increase in the efficiency of myogenic differentiation. Furthermore, injections of miRNA-treated MABs in aged mice resulted in an improvement in skeletal muscle features, such as muscle weight, strength, cross-sectional area, and fibrosis compared to controls. Overall, we provide evidence that the extracellular vesicle-derived miRNA signature we identified enhances the myogenic potential of myogenic stem cells.


Subject(s)
Extracellular Vesicles , MicroRNAs , Animals , Mice , MicroRNAs/genetics , Muscular Atrophy , Stem Cells , Muscle, Skeletal
6.
Microsc Res Tech ; 85(7): 2381-2389, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35485998

ABSTRACT

2,2-bis(6-bromo-1H-indol-3-yl) ethanamine, a marine bisindole alkaloid, showed anticancer property in several tumor cell lines thanks to the presence of a 3,3'-diindolylmethane scaffold. Here, the modifications in its chemical structure into alkaloid-like derivatives, have been evaluated, to investigate changes in its biological activities. Three derivatives have been considered and their potential apoptotic action has been evaluated through morpho-functional analyses in a human cancer cell line. Apoptosis appears strongly decreased in the derivatives without the bromine atoms (1) and in those where the bromine atoms have been substituted with fluorine atoms (2). On the contrary, the methylation of indole NH (3) does not alter the alkaloid apoptotic activity that occurs through mitochondria involvement supported by cardiolipin peroxidation and dysfunctional mitochondria presence. This manuscript highlights the alkaloid derivative cytotoxic effect, which is strictly correlated to the presence of N-methylated bisindole alkaloid and bromine atoms, conditions which assure to maintain the pro-apoptotic activity. Since molecular therapies, by targeting mitochondria pathways, have shown positive outcomes against several cancer cells, the alkaloid with bisindole methylated scaffold and the two bromine atoms can be considered a promising candidate to develop new derivatives with strong anticancer property. RESEARCH HIGHLIGHTS: 2,2-bis(6-bromo-1H-indol-3-yl) ethanamine is an alkaloid known for its anticancer properties. Morpho-functional analyses evaluated cytotoxicity of its synthetic derivatives in tumor cells. Anticancer properties depend on the presence of bisindole scaffold and the two bromine units.


Subject(s)
Alkaloids , Antineoplastic Agents , Alkaloids/pharmacology , Antineoplastic Agents/pharmacology , Apoptosis , Bromine/pharmacology , Cell Line, Tumor , Humans
7.
Ann Jt ; 7: 38, 2022.
Article in English | MEDLINE | ID: mdl-38529145

ABSTRACT

Background and Objective: The discoid lateral meniscus (DLM) is a congenital abnormality of the meniscal shape, characterized by a typical central hypertrophy and a diameter larger than a regular meniscus, potentially leading to knee pain and symptoms, especially in children. The present study provides an update and a general review of this uncommon meniscal pathology. The incidence of discoid meniscus is about 0.4-17% for the lateral and 0.1-0.3% for the medial, although, being often asymptomatic, the true prevalence is unknown. We aim to enhance awareness on this subject to medical care provider. Methods: A literature search was performed on PubMed, including articles written in English until October 2021. Key Content and Findings: The articles regarding etiology, diagnosis and management of DLM in children or in patients younger than 18 years were reviewed using the narrative approach. Conclusions: Recent literature has shown that DLM is one of the most frequent congenital anomalies of the knee encountered during childhood. While asymptomatic children with incidental finding can be managed nonoperatively, symptomatic painful DLM should be addressed surgically, restoring typical anatomy using saucerization, tear repair, and stable fixation of the meniscus. The risk of osteoarthritis progression seems to be higher in children with operated DLM, imposing prolonged follow-up and cartilage preserving strategies for these patients.

8.
Pharmaceutics ; 13(12)2021 11 30.
Article in English | MEDLINE | ID: mdl-34959330

ABSTRACT

A redox-responsive nanocarrier is a promising strategy for the intracellular drug release because it protects the payload, prevents its undesirable leakage during extracellular transport, and favors site-specific drug delivery. In this study, we developed a novel redox responsive core-shell structure nanohydrogel prepared by a water in oil nanoemulsion method using two biocompatible synthetic polymers: vinyl sulfonated poly(N-(2-hydroxypropyl) methacrylamide mono/dilactate)-polyethylene glycol-poly(N-(2-hydroxypropyl) methacrylamide mono/dilactate) triblock copolymer, and thiolated hyaluronic acid. The influence on the nanohydrogel particle size and distribution of formulation parameters was investigated by a three-level full factorial design to optimize the preparation conditions. The surface and core-shell morphology of the nanohydrogel were observed by scanning electron microscope, transmission electron microscopy, and further confirmed by Fourier transform infrared spectroscopy and Raman spectroscopy from the standpoint of chemical composition. The redox-responsive biodegradability of the nanohydrogel in reducing environments was determined using glutathione as reducing agent. A nanohydrogel with particle size around 250 nm and polydispersity index around 0.1 is characterized by a thermosensitive shell which jellifies at body temperature and crosslinks at the interface of a redox-responsive hyaluronic acid core via the Michael addition reaction. The nanohydrogel showed good encapsulation efficiency for model macromolecules of different molecular weight (93% for cytochrome C, 47% for horseradish peroxidase, and 90% for bovine serum albumin), capacity to retain the peroxidase-like enzymatic activity (around 90%) of cytochrome C and horseradish peroxidase, and specific redox-responsive release behavior. Additionally, the nanohydrogel exhibited excellent cytocompatibility and internalization efficiency into macrophages. Therefore, the developed core-shell structure nanohydrogel can be considered a promising tool for the potential intracellular delivery of different pharmaceutical applications, including for cancer therapy.

9.
Front Mol Biosci ; 8: 732900, 2021.
Article in English | MEDLINE | ID: mdl-34820420

ABSTRACT

Breast cancer (BC) is the most commonly diagnosed malignant tumor in women worldwide, and the leading cause of cancer death in the female population. The percentage of patients experiencing poor prognosis along with the risk of developing metastasis remains high, also affecting the resistance to current main therapies. Cancer progression and metastatic development are no longer due entirely to their intrinsic characteristics, but also regulated by signals derived from cells of the tumor microenvironment. Extracellular vesicles (EVs) packed with DNA, RNA, and proteins, are the most attractive targets for both diagnostic and therapeutic applications, and represent a decisive challenge as liquid biopsy-based markers. Here we performed a study based on a multiplexed phenotyping flow cytometric approach to characterize BC-derived EVs from BC patients and cell lines, through the detection of multiple antigens. Our data reveal the expression of EVs-related biomarkers derived from BC patient plasma and cell line supernatants, suggesting that EVs could be exploited for characterizing and monitoring disease progression.

10.
Biomolecules ; 11(8)2021 07 28.
Article in English | MEDLINE | ID: mdl-34439778

ABSTRACT

Neuro-muscular disorders include a variety of diseases induced by genetic mutations resulting in muscle weakness and waste, swallowing and breathing difficulties. However, muscle alterations and nerve depletions involve specific molecular and cellular mechanisms which lead to the loss of motor-nerve or skeletal-muscle function, often due to an excessive cell death. Morphological and molecular studies demonstrated that a high number of these disorders seem characterized by an upregulated apoptosis which significantly contributes to the pathology. Cell death involvement is the consequence of some cellular processes that occur during diseases, including mitochondrial dysfunction, protein aggregation, free radical generation, excitotoxicity and inflammation. The latter represents an important mediator of disease progression, which, in the central nervous system, is known as neuroinflammation, characterized by reactive microglia and astroglia, as well the infiltration of peripheral monocytes and lymphocytes. Some of the mechanisms underlying inflammation have been linked to reactive oxygen species accumulation, which trigger mitochondrial genomic and respiratory chain instability, autophagy impairment and finally neuron or muscle cell death. This review discusses the main inflammatory pathways contributing to cell death in neuro-muscular disorders by highlighting the main mechanisms, the knowledge of which appears essential in developing therapeutic strategies to prevent the consequent neuron loss and muscle wasting.


Subject(s)
Apoptosis/genetics , Hereditary Sensory and Motor Neuropathy/metabolism , Motor Neuron Disease/metabolism , Muscular Diseases/metabolism , Muscular Dystrophies/metabolism , Neuromuscular Junction Diseases/metabolism , Astrocytes/metabolism , Astrocytes/pathology , Autophagy/genetics , Cytokines/genetics , Cytokines/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Gene Expression Regulation , Hereditary Sensory and Motor Neuropathy/genetics , Hereditary Sensory and Motor Neuropathy/pathology , Humans , Inflammation , Microglia/metabolism , Microglia/pathology , Mitochondria/metabolism , Mitochondria/pathology , Motor Neuron Disease/genetics , Motor Neuron Disease/pathology , Muscular Diseases/genetics , Muscular Diseases/pathology , Muscular Dystrophies/genetics , Muscular Dystrophies/pathology , NF-kappa B/genetics , NF-kappa B/metabolism , Neuromuscular Junction Diseases/genetics , Neuromuscular Junction Diseases/pathology , Neurons/metabolism , Neurons/pathology , Signal Transduction
11.
Diagnostics (Basel) ; 11(3)2021 Mar 08.
Article in English | MEDLINE | ID: mdl-33800141

ABSTRACT

Prostate Cancer (PCa) is one of the most frequently identified urological cancers. PCa patients are often over-diagnosed due to still not highly specific diagnostic methods. The need for more accurate diagnostic tools to prevent overestimated diagnosis and unnecessary treatment of patients with non-malignant conditions is clear, and new markers and methods are strongly desirable. Extracellular vesicles (EVs) hold great promises as liquid biopsy-based markers. Despite the biological and technical issues present in their detection and study, these particles can be found highly abundantly in the biofluid and encompass a wealth of macromolecules that have been reported to be related to many physiological and pathological processes, including cancer onset, metastasis spreading, and treatment resistance. The present study aims to perform a technical feasibility study to develop a new workflow for investigating EVs from several biological sources. Serum and urinary supernatant EVs of PCa, benign prostatic hyperplasia (BPH) patients, and healthy donors were isolated and investigated by a fast, easily performable, and cost-effective cytofluorimetric approach for a multiplex detection of 37 EV-antigens. We also observed significant alterations in serum and urinary supernatant EVs potentially related to BPH and PCa, suggesting a potential clinical application of this workflow.

12.
Nanotechnol Sci Appl ; 14: 29-48, 2021.
Article in English | MEDLINE | ID: mdl-33727804

ABSTRACT

INTRODUCTION: Since most biologically active macromolecules are natural nanostructures, operating in the same scale of biomolecules gives the great advantage to enhance the interaction with cellular components. Noteworthy efforts in nanotechnology, particularly in biomedical and pharmaceutical fields, have propelled a high number of studies on the biological effects of nanomaterials. Moreover, the determination of specific physicochemical properties of nanomaterials is crucial for the evaluation and design of novel safe and efficient therapeutics and diagnostic tools. In this in vitro study, we report a physicochemical characterisation of fluorescent silica nanoparticles (NPs), interacting with biological models (U937 and PBMC cells), describing the specific triggered biologic response. METHODS: Flow Cytometric and Confocal analyses are the main method platforms. However TEM, NTA, DLS, and chemical procedures to synthesize NPs were employed. RESULTS: NTB700 NPs, employed in this study, are fluorescent core-shell silica nanoparticles, synthesized through a micelle-assisted method, where the fluorescence energy transfer process, known as FRET, occurs at a high efficiency rate. Using flow cytometry and confocal microscopy, we observed that NTB700 NP uptake seemed to be a rapid, concentration-, energy- and cell type-dependent process, which did not induce significant cytotoxic effects. We did not observe a preferred route of internalization, although their size and the possible aggregated state could influence their extrusion. At this level of analysis, our investigation focuses on lysosome and mitochondria pathways, highlighting that both are involved in NP co-localization. Despite the main mitochondria localization, NPs did not induce a significant increase of intracellular ROS, known inductors of apoptosis, during the time course of analyses. Finally, both lymphoid and myeloid cells are able to release NPs, essential to their biosafety. DISCUSSION: These data allow to consider NTB700 NPs a promising platform for future development of a multifunctional system, by combining imaging and localized therapeutic applications in a unique tool.

13.
J Chromatogr A ; 1638: 461861, 2021 Feb 08.
Article in English | MEDLINE | ID: mdl-33472105

ABSTRACT

In the course of their life span, cells release a multitude of different vesicles in the extracellular matrix (EVs), constitutively and/or upon stimulation, carrying signals either inside or on their membrane for intercellular communication. As a natural delivery tool, EVs present many desirable advantages, such as biocompatibility and low toxicity. However, due to the complex biogenesis of EVs and their high heterogeneity in size distribution and composition, the characterization and quantification of EVs and their subpopulations still represents an enticing analytical challenge. Centrifugation methods allow to obtain different subpopulations in an easy way from cell culture conditioned medium and biological fluids including plasma, amniotic fluid and urine, but they still present some drawbacks and limitations. An unsatisfactory isolation can limit their downstream analysis and lead to wrong conclusions regarding biological activities. Isolation and characterization of biologically relevant nanoparticles like EVs is crucial to investigate specific molecular and signaling patterns and requires new combined approaches. Our work was focused on HF5 (miniaturized, hollow-fiber flow field-flow fractionation), and its hyphenation to ultracentrifugation techniques, which are the most assessed techniques for vesicle isolation. We exploited model samples obtained from culture medium of murine myoblasts (C2C12), known to release different subsets of membrane-derived vesicles. Large and small EVs (LEVs and SEVs) were isolated by differential ultracentrifugation (UC). Through an HF5 method employing UV, fluorescence and multi-angle laser scattering as detectors, we characterized these subpopulations in terms of size, abundance and DNA/protein content; moreover, we showed that microvesicles tend to hyper-aggregate and partially release nucleic matter. The quali-quantitative information we obtained from the fractographic profiles was improved with respect to Nano Tracking Analysis (NTA) estimation. The SEV population was then further separated using density gradient centrifugation (DGC), and four fractions were submitted again to HF5-multidetection. This technique is based on a fully orthogonal principle, since F4 does not separate by density, and provided uncorrelated information for each of the fractions processed. The "second dimension" achieved with HF5 showed good promise in sorting particles with both different size and content, and allowed to identify the presence of fibrilloid nucleic matter. This analytical bidimensional approach proved to be effective for the characterization of highly complex biological samples such as mixtures of EVs and could provide purified fractions for further biological characterization.


Subject(s)
Chemistry Techniques, Analytical/methods , Extracellular Vesicles/chemistry , Fractionation, Field Flow , Ultracentrifugation , Animals , Chemistry Techniques, Analytical/instrumentation , DNA/analysis , Mice , Proteins/analysis
14.
Eur J Histochem ; 64(3)2020 Sep 23.
Article in English | MEDLINE | ID: mdl-33029995

ABSTRACT

The present study investigated the morphology of fresh and brine-cured table olives (TOs) as well as the changes that occur when drupes are attacked by the fruit fly Bactrocera oleae. Morphological analyses were performed using light microscopy (LM) and environmental scanning electron microscopy coupled with energy dispersive spectroscopy (ESEM-EDS). The LM analysis was carried out with visible light to evaluate sections stained with either PAS or Azan mixtures as well as unstained sections observed at fluorescence microscopy. The results of the analyses showed that: i) Azan and PAS staining played a useful complementary role, increasing the information provided by the histological analysis. Indeed, in both fresh and brine-cured TOs, epidermal layers and mesocarpal cells were clearly revealed, including sclereid cells. The histological analysis allowed also to identifying the presence of secoiridoid-biophenols (seco-BPs) in both cell walls and vacuoles, as well as in the drupe regions that had been attacked by fruit flies, where they were found at higher concentrations; ii) in fresh and brine-cured olives, the excitation at 480 nm revealed the distribution of the fluorophores, among which the seco-BP are enclosed; iii) the ESEM-EDS analysis revealed the natural morphology of fresh olives, including the dimensions of their cell layers and the size and depth of the mechanical barriers of suberized or necrotic cells around the larva holes. In addition, the elemental composition of regions of interest of the drupe was determined in fresh and brine-cured TOs. The results highlighted the effectiveness of combined use of LM and ESEM-EDS in order to obtain a picture, as complete as possible, of the structural morphology of TOs. Such analytical combined approach can be used to support multidisciplinary studies aimed at the selection of new cultivars more resistant to fly attack.


Subject(s)
Larva/pathogenicity , Olea/cytology , Olea/parasitology , Tephritidae/pathogenicity , Animals , Infections/parasitology , Infections/pathology , Iridoids/analysis , Microscopy, Electron, Scanning , Olea/chemistry , Phenols/analysis , Plant Pathology , Salts/chemistry , Spectrometry, X-Ray Emission , Tephritidae/growth & development
15.
Microsc Res Tech ; 83(12): 1464-1470, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32681811

ABSTRACT

Holotomographic (HT) microscopy, combines two techniques, holography and tomography, and, in this way, it allows to quantitatively and noninvasively investigate cells and thin tissue slices, by obtaining three-dimensional (3D) images and by monitoring inner morphological changes. HT has indeed two significant advantages: it is label-free and low-energy light passes through the specimen with minimal perturbation. Using quantitative phase imaging with optical diffraction tomography, it can produce 3D images by measuring the refraction index (RI). Therefore, based on RI values, HT can provide structural and chemical cell information, such as dry mass values, morphological changes, or cellular membrane dynamics. In this study, suspended and adherent culture cells have been processed for HT analyses. Some of them have been treated with known apoptotic drugs or pro-oxidant agents and cell response has been investigated both by conventional microscopic approaches and by HT. The ultrastructural and fluorescence images have been compared to those obtained by HT and their congruence has been discussed, with particular attention to apoptotic cell death and on correlated plasma membrane changes. HT appears a valid approach to further characterize well-known apoptotic features such as cell blebbing, chromatin condensation, micronuclei, and apoptotic bodies. Taken together, our data demonstrate that HT appears suitable to highlight suspended or adherent cell behavior under different conditions. In particular, this technique appears an important new tool to distinguish healthy cells from the apoptotic ones, as well as to monitor outer and inner cell changes in a rapid way and with a noninvasive, label-free, approach.


Subject(s)
Apoptosis , Microscopy , Chromatin , Imaging, Three-Dimensional , Refractometry
16.
J Extracell Vesicles ; 9(1): 1725285, 2020.
Article in English | MEDLINE | ID: mdl-32158519

ABSTRACT

The role of epigenetics in endothelial cell senescence is a cutting-edge topic in ageing research. However, little is known of the relative contribution to pro-senescence signal propagation provided by microRNAs shuttled by extracellular vesicles (EVs) released from senescent cells. Analysis of microRNA and DNA methylation profiles in non-senescent (control) and senescent (SEN) human umbilical vein endothelial cells (HUVECs), and microRNA profiling of their cognate small EVs (sEVs) and large EVs demonstrated that SEN cells released a significantly greater sEV number than control cells. sEVs were enriched in miR-21-5p and miR-217, which target DNMT1 and SIRT1. Treatment of control cells with SEN sEVs induced a miR-21/miR-217-related impairment of DNMT1-SIRT1 expression, the reduction of proliferation markers, the acquisition of a senescent phenotype and a partial demethylation of the locus encoding for miR-21. MicroRNA profiling of sEVs from plasma of healthy subjects aged 40-100 years showed an inverse U-shaped age-related trend for miR-21-5p, consistent with senescence-associated biomarker profiles. Our findings suggest that miR-21-5p/miR-217 carried by SEN sEVs spread pro-senescence signals, affecting DNA methylation and cell replication.

17.
Biology (Basel) ; 9(1)2020 Jan 20.
Article in English | MEDLINE | ID: mdl-31968627

ABSTRACT

In the last decade, a new method of cell-cell communication mediated by membranous extracellular vesicles (EVs) has emerged. EVs, including exosomes, microvesicles, and apoptotic bodies (ApoBDs), represent a new and important topic, because they are a means of communication between cells and they can also be involved in removing cellular contents. EVs are characterized by differences in size, origin, and content and different types have different functions. They appear as membranous sacs released by a variety of cells, in different physiological and patho-physiological conditions. Intringuingly, exosomes and microvesicles are a potent source of genetic information carriers between different cell types both within a species and even across a species barrier. New, and therefore still relatively poorly known vesicles are apoptotic bodies, on which numerous in-depth studies are needed in order to understand their role and possible function. In this review we would like to analyze their morpho-functional characteristics.

18.
Eur J Histochem ; 63(1)2019 Feb 11.
Article in English | MEDLINE | ID: mdl-30739432

ABSTRACT

The human meniscus plays a crucial role for transmission and distribution of load across the knee, as well as shock absorption, joint stability, lubrication, and congruity. The aim of this study was to compare the complex geometry, and unique ultrastructure and tissue composition of the meniscus in healthy (control) and pathological conditions to provide understanding of structural changes that could be helpful in the future design of targetted therapies and improvement of treatment indications. We analyzed meniscus samples collected from 3 healthy multi-organ donors (median age, 66 years), 5 patients with traumatic meniscal tear (median age, 41 years) and 3 patients undergoing total knee replacement (TKR) for end-stage osteoarthritis (OA) (median age, 72 years). We evaluated the extracellular matrix (ECM) organization, the appearance and distribution of areas of calcification, and modifications of cellular organization and structure by electron microscopy and histology. The ECM structure was similar in specimens from traumatic meniscus tears compared to those from patients with late-stage OA, showing disorganization of collagen fibers and increased proteoglycan content. Cells of healthy menisci showed mainly diffuse chromatin and well preserved organelles. Both in traumatic and in OA menisci, we observed increased chromatin condensation, organelle degeneration, and cytoplasmic vacuolization, a portion of which contained markers of autophagic vacuoles. Areas of calcification were also observed in both traumatic and OA menisci, as well as apoptotic-like features that were particularly prominent in traumatic meniscal tear samples. We conclude that meniscal tissue from patients with traumatic meniscal injury demonstrate pathological alterations characteristic of tissue from older patients undergoing TKR, suggesting that they have high susceptibility to develop OA.


Subject(s)
Knee Injuries/pathology , Knee Joint/anatomy & histology , Meniscus/cytology , Meniscus/pathology , Osteoarthritis, Knee/pathology , Adult , Aged , Calcinosis/pathology , Extracellular Matrix/pathology , Extracellular Matrix/ultrastructure , Female , Humans , Knee Joint/pathology , Male , Meniscus/injuries , Meniscus/ultrastructure , Microscopy, Electron, Transmission , Middle Aged
19.
Microsc Res Tech ; 81(11): 1295-1300, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30295364

ABSTRACT

Iron is one of the most important elements for human, because it plays an essential role in many metabolic processes. However, it is also recognized to be dangerous for its detrimental effect inside human cells, where, in the absence of homeostatic balance, it can induce free radicals formation. Moreover, an excessive accumulation of iron in tissues can produce iron overload, a condition incompatible with life. The use of liposomes as carriers can represent an interesting iron therapy to improve iron bioavailability and reduce its negative effects, in particular during pregnancy. In this study, a morphological analysis has been performed on commercial liposome vesicles at various drying times, both in saline solution and in distilled water. Furthermore, to highlight their possible interaction or internalization in cells, liposomes have been administered to human hemopoietic U937 cells. Ultrastructural analyses confirm that vesicle morphology and size are comparable with classical liposomal structures. Products are stable during specimen preparation and drying. Additionally, they have a good ability to penetrate into cells, interacting with cytoplasmic organelles, without inducing, at least apparently, any ultrastructural damage.


Subject(s)
Drug Carriers/metabolism , Ferrous Compounds/metabolism , Liposomes/metabolism , Anemia, Iron-Deficiency/drug therapy , Cell Line, Tumor , Drug Carriers/therapeutic use , Ferrous Compounds/therapeutic use , Humans , Iron/metabolism , Iron/therapeutic use , Microscopy, Electron, Transmission , U937 Cells
20.
Oxid Med Cell Longev ; 2018: 6430601, 2018.
Article in English | MEDLINE | ID: mdl-30607218

ABSTRACT

Red blood cells (RBCs) from people affected by autism spectrum disorders (ASDs) are a target of oxidative stress. By scanning electron microscopy, we analyzed RBC morphology from 22 ASD children and show here that only 47.5 ± 3.33% of RBC displayed the typical biconcave shape, as opposed to 87.5 ± 1.3% (mean ± SD) of RBC from 21 sex- and age-matched healthy typically developing (TD) controls. Codocytes and star-shaped cells accounted for about 30% of all abnormally shaped ASD erythrocytes. RBC shape alterations were independent of the anticoagulant used (Na2-EDTA or heparin) and of different handling procedures preceding glutaraldehyde fixation, thus suggesting that they were not artefactual. Incubation for 24 h in the presence of antioxidants restored normal morphology in most erythrocytes from ASD patients. By Coomassie staining, as well as Western blotting analysis of relevant proteins playing a key role in the membrane-cytoskeleton organization, we were unable to find differences in RBC ghost composition between ASD and normal subjects. Phosphatidylserine (PS) exposure towards the extracellular membrane domain was examined in both basal and erythroptosis-inducing conditions. No differences were found between ASD and TD samples except when the aminophospholipid translocase was blocked by N-ethylmaleimide, upon which an increased amount of PS was found to face the outer membrane in RBC from ASD. These complex data are discussed in the light of the current understanding of the mode by which oxidative stress might affect erythrocyte shape in ASD and in other pathological conditions.


Subject(s)
Autistic Disorder/blood , Erythrocyte Membrane/metabolism , Oxidative Stress/genetics , Phospholipids/metabolism , Child , Child, Preschool , Female , Humans , Male
SELECTION OF CITATIONS
SEARCH DETAIL