Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Science ; 381(6657): eabq4964, 2023 08 04.
Article in English | MEDLINE | ID: mdl-37535749

ABSTRACT

Spatial omics has been widely heralded as the new frontier in life sciences. This term encompasses a wide range of techniques that promise to transform many areas of biology and eventually revolutionize pathology by measuring physical tissue structure and molecular characteristics at the same time. Although the field came of age in the past 5 years, it still suffers from some growing pains: barriers to entry, robustness, unclear best practices for experimental design and analysis, and lack of standardization. In this Review, we present a systematic catalog of the different families of spatial omics technologies; highlight their principles, power, and limitations; and give some perspective and suggestions on the biggest challenges that lay ahead in this incredibly powerful-but still hard to navigate-landscape.


Subject(s)
Genomics , Genomics/methods , Research Design , Humans , Animals , Mice , Organ Specificity
2.
Commun Biol ; 6(1): 277, 2023 03 16.
Article in English | MEDLINE | ID: mdl-36928598

ABSTRACT

Expanding the arsenal of prophylactic approaches against SARS-CoV-2 is of utmost importance, specifically those strategies that are resistant to antigenic drift in Spike. Here, we conducted a screen of over 16,000 RNAi triggers against the SARS-CoV-2 genome, using a massively parallel assay to identify hyper-potent siRNAs. We selected Ten candidates for in vitro validation and found five siRNAs that exhibited hyper-potent activity (IC50 < 20 pM) and strong blockade of infectivity in live-virus experiments. We further enhanced this activity by combinatorial pairing of the siRNA candidates and identified cocktails that were active against multiple types of variants of concern (VOC). We then examined over 2,000 possible mutations in the siRNA target sites by using saturation mutagenesis and confirmed broad protection of the leading cocktail against future variants. Finally, we demonstrated that intranasal administration of this siRNA cocktail effectively attenuates clinical signs and viral measures of disease in the gold-standard Syrian hamster model. Our results pave the way for the development of an additional layer of antiviral prophylaxis that is orthogonal to vaccines and monoclonal antibodies.


Subject(s)
COVID-19 , RNA, Small Interfering , SARS-CoV-2 , Animals , Cricetinae , Administration, Intranasal , COVID-19/prevention & control , Mesocricetus , RNA Interference , RNA, Small Interfering/genetics , RNA, Small Interfering/therapeutic use , SARS-CoV-2/genetics
3.
Dev Cell ; 57(23): 2661-2668.e5, 2022 12 05.
Article in English | MEDLINE | ID: mdl-36473462

ABSTRACT

PIWI-interacting RNAs (piRNAs) are small RNAs bound by PIWI-clade Argonaute proteins that function to silence transposable elements (TEs). Following mouse primordial germ cell (mPGC) specification around E6.25, fetal piRNAs emerge in male gonocytes from E13.5 onward. The in vitro differentiation of mPGC-like cells (mPGCLCs) has raised the possibility of studying the fetal piRNA pathway in greater depth. However, using single-cell RNA-seq and RT-qPCR along mPGCLC differentiation, we find that piRNA pathway factors are not fully expressed in Day 6 mPGCLCs. Moreover, we do not detect piRNAs across a panel of Day 6 mPGCLC lines using small RNA-seq. Our combined efforts highlight that in vitro differentiated Day 6 mPGCLCs do not yet resemble E13.5 or later mouse gonocytes where the piRNA pathway is active. This Matters Arising paper is in response to von Meyenn et al. (2016), published in Developmental Cell. See also the correction by von Meyenn et al. published in this issue.


Subject(s)
Germ Cells , Piwi-Interacting RNA , Male , Mice , Animals
4.
bioRxiv ; 2022 Apr 12.
Article in English | MEDLINE | ID: mdl-35441162

ABSTRACT

Expanding the arsenal of prophylactic approaches against SARS-CoV-2 is of utmost importance, specifically those strategies that are resistant to antigenic drift in Spike. Here, we conducted a screen with over 16,000 RNAi triggers against the SARS-CoV-2 genome using a massively parallel assay to identify hyper-potent siRNAs. We selected 10 candidates for in vitro validation and found five siRNAs that exhibited hyper-potent activity with IC50<20pM and strong neutralisation in live virus experiments. We further enhanced the activity by combinatorial pairing of the siRNA candidates to develop siRNA cocktails and found that these cocktails are active against multiple types of variants of concern (VOC). We examined over 2,000 possible mutations to the siRNA target sites using saturation mutagenesis and identified broad protection against future variants. Finally, we demonstrated that intranasal administration of the siRNA cocktail effectively attenuates clinical signs and viral measures of disease in the Syrian hamster model. Our results pave the way to development of an additional layer of antiviral prophylaxis that is orthogonal to vaccines and monoclonal antibodies.

6.
RNA ; 21(11): 1885-97, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26323280

ABSTRACT

PIWI proteins and piRNA pathways are essential for transposon silencing and some aspects of gene regulation during animal germline development. In contrast to most animal species, some flatworms also express PIWIs and piRNAs in somatic stem cells, where they are required for tissue renewal and regeneration. Here, we have identified and characterized piRNAs and PIWI proteins in the emerging model flatworm Macrostomum lignano. We found that M. lignano encodes at least three PIWI proteins. One of these, Macpiwi1, acts as a key component of the canonical piRNA pathway in the germline and in somatic stem cells. Knockdown of Macpiwi1 dramatically reduces piRNA levels, derepresses transposons, and severely impacts stem cell maintenance. Knockdown of the piRNA biogenesis factor Macvasa caused an even greater reduction in piRNA levels with a corresponding increase in transposons. Yet, in Macvasa knockdown animals, we detected no major impact on stem cell self-renewal. These results may suggest stem cell maintenance functions of PIWI proteins in flatworms that are distinguishable from their impact on transposons and that might function independently of what are considered canonical piRNA populations.


Subject(s)
Argonaute Proteins/metabolism , DNA Transposable Elements/genetics , Gene Silencing/physiology , Platyhelminths/genetics , Platyhelminths/metabolism , Stem Cells/metabolism , Animals , Gene Expression Regulation/genetics , Germ Cells/metabolism , RNA, Small Interfering/genetics , Regeneration/genetics
7.
Proc Natl Acad Sci U S A ; 112(40): 12462-7, 2015 Oct 06.
Article in English | MEDLINE | ID: mdl-26392545

ABSTRACT

The free-living flatworm, Macrostomum lignano has an impressive regenerative capacity. Following injury, it can regenerate almost an entirely new organism because of the presence of an abundant somatic stem cell population, the neoblasts. This set of unique properties makes many flatworms attractive organisms for studying the evolution of pathways involved in tissue self-renewal, cell-fate specification, and regeneration. The use of these organisms as models, however, is hampered by the lack of a well-assembled and annotated genome sequences, fundamental to modern genetic and molecular studies. Here we report the genomic sequence of M. lignano and an accompanying characterization of its transcriptome. The genome structure of M. lignano is remarkably complex, with ∼75% of its sequence being comprised of simple repeats and transposon sequences. This has made high-quality assembly from Illumina reads alone impossible (N50=222 bp). We therefore generated 130× coverage by long sequencing reads from the Pacific Biosciences platform to create a substantially improved assembly with an N50 of 64 Kbp. We complemented the reference genome with an assembled and annotated transcriptome, and used both of these datasets in combination to probe gene-expression patterns during regeneration, examining pathways important to stem cell function.


Subject(s)
Genome, Helminth/genetics , Regeneration/genetics , Transcriptome/genetics , Animals , Base Sequence , Cluster Analysis , Gene Expression Profiling/methods , Gene Ontology , Genes, Helminth/genetics , Helminth Proteins/classification , Helminth Proteins/genetics , Molecular Sequence Data , Phylogeny , Platyhelminths/cytology , Platyhelminths/genetics , Platyhelminths/physiology , Sequence Homology, Nucleic Acid , Stem Cells/metabolism
8.
Front Cell Neurosci ; 8: 51, 2014.
Article in English | MEDLINE | ID: mdl-24600353

ABSTRACT

In the last decade, our group has intensively studied the annual fish Nothobranchius furzeri as a new experimental model in Biology specifically applied to aging research. We previously studied adult neuronal stem cells of N. furzeri in vivo and we demonstrated an age-dependent decay in adult neurogenesis. More recently we identified and quantified the expression of miRNAs in the brain of N. furzeri and we detected 165 conserved miRNAs and found that brain aging in this fish is associated with coherent up-regulation of well-known tumor suppressor miRNAs, as well as down-regulation of well-known onco miRNAs~- In the present work we characterized the expression of miR-15a, miR-20a, and microRNA cluster 17-92 in the principal neurogenic niches of the brain of young and old subjects of N. furzeri, by using in situ hybridization techniques, together with proliferating-cell nuclear antigen immuno-staining for a simultaneous visualization of the neuronal progenitors. We found that: (1) the expression of miR-15a is higher in the brain of old subjects and concentrates mainly in the principal neurogenic niches of telencephalon and optic tectum, (2) the expression of miR-20a is higher in the brain of young subjects, but more widespread to the areas surrounding the neurogenic niches, (3) finally, the expression of the microRNA cluster 17-92 is higher in the brain of young subjects, concentrated mainly in the principal neurogenic niches of telencephalon and cerebellum, and with reduced intensity in the optic tectum. Taken together, our data show that these microRNAs, originally identified in whole-brain analysis, are specifically regulated in the stem cell niche during aging.

9.
Aging Cell ; 11(2): 241-51, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22171971

ABSTRACT

We studied adult neurogenesis in the short-lived annual fish Nothobranchius furzeri and quantified the effects of aging on the mitotic activity of the neuronal progenitors and the expression of glial fibrillary acid protein (GFAP) in the radial glia. The distribution of neurogenic niches is substantially similar to that of zebrafish and adult stem cells generate neurons, which persist in the adult brain. As opposed to zebrafish, however, the N. furzeri genome contains a doublecortin (DCX) gene. Doublecortin is transiently expressed by newly generated neurons in the telencephalon and optic tectum (OT). We also analyzed the expression of the microRNA miR-9 and miR-124 and found that they have complementary expression domains: miR-9 is expressed in the neurogenic niches of the telencephalon and the radial glia of the OT, while miR-124 is expressed in differentiated neurons. The main finding of this paper is the demonstration of an age-dependent decay in adult neurogenesis. Using unbiased stereological estimates of cell numbers, we detected an almost fivefold decrease in the number of mitotically active cells in the OT between young and old age. This reduced mitotic activity is paralleled by a reduction in DCX labeling. Finally, we detected a dramatic up-regulation of GFAP in the radial glia of the aged brain. This up-regulation is not paralleled by a similar up-regulation of S100B and Musashi-1, two other markers of the radial glia. In summary, the brain of N. furzeri replicates two typical hallmarks of mammalian aging: gliosis and reduced adult neurogenesis.


Subject(s)
Aging , Fishes/metabolism , Neurogenesis , Neurons/cytology , Animals , Cell Survival , Neurons/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...