Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
1.
Pharmacol Rep ; 76(2): 287-306, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38526651

ABSTRACT

Cancer remains one of the leading causes of death in the world. Despite the considerable success of conventional treatment strategies, the incidence and mortality rates are still high, making developing new effective anticancer therapies an urgent priority. Ginsenoside Rg5 (Rg5) is a minor ginsenoside constituent obtained exclusively from ginseng species and is known for its broad spectrum of pharmacological activities. This article aimed to comprehensively review the anticancer properties of Rg5, focusing on action mechanisms, structure-activity relationship (SAR), and pharmacokinetics attributes. The in vitro and in vivo activities of Rg5 have been proven against several cancer types, such as breast, liver, lung, bone, and gastrointestinal (GI) cancers. The modulation of multiple signaling pathways critical for cancer growth and survival mediates these activities. Nevertheless, human clinical studies of Rg5 have not been addressed before, and there is still considerable ambiguity regarding its pharmacokinetics properties. In addition, a significant shortage in the structure-activity relationship (SAR) of Rg5 has been identified. Therefore, future efforts should focus on further optimization by performing extensive SAR studies to uncover the structural features essential for the potent anticancer activity of Rg5. Thus, this review highlights the value of Rg5 as a potential anticancer drug candidate and identifies the research areas requiring more investigation.


Subject(s)
Antineoplastic Agents , Ginsenosides , Neoplasms , Humans , Ginsenosides/pharmacology , Ginsenosides/therapeutic use , Apoptosis , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Neoplasms/drug therapy , Structure-Activity Relationship
2.
Sci Rep ; 14(1): 4694, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38409331

ABSTRACT

Community detection recognizes groups of densely connected nodes across networks, one of the fundamental procedures in network analysis. This research boosts the standard but locally optimized Greedy Modularity algorithm for community detection. We introduce innovative exploration techniques that include a variety of node and community disassembly strategies. These strategies include methods like non-triad creating, feeble, random as well as inadequate embeddedness for nodes, as well as low internal edge density, low triad participation ratio, weak, low conductance as well as random tactics for communities. We present a methodology that showcases the improvement in modularity across the wide variety of real-world and synthetic networks over the standard approaches. A detailed comparison against other well-known community detection algorithms further illustrates the better performance of our improved method. This study not only optimizes the process of community detection but also broadens the scope for a more nuanced and effective network analysis that may pave the way for more insights as to the dynamism and structures of its functioning by effectively addressing and overcoming the limitations that are inherently attached with the existing community detection algorithms.

3.
Int J Biol Macromol ; 260(Pt 1): 129458, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38232871

ABSTRACT

Kappa-carrageenan is one of the most traded marine-derived hydrocolloids used in the food-and-beverage, pharmaceuticals, and personal care/cosmetics industries. K. alvarezii (previously known as Kappaphycus alvarezii) is arguably the most important natural producer based on annual production size and near-homogeneity of the product (i.e., primarily being the kappa-type). The anticipated expansion of the kappa-carrageenan market in the coming years could easily generate >100,000 MT of residual K. alvarezii biomass per year, which, if left untreated, can severely affect the environment and economy of the surrounding area. Among several possible valorization routes, turning the biomass residue into anti-photoaging cosmetic ingredients could potentially be the most sustainable one. Not only optimizing the profit (thus better ensuring economic sustainability) relative to the biofuels- and animal feed-routes, the action could also promote environmental sustainability. It could reduce the dependency of the current cosmetic industry on both petrochemicals and terrestrial plant-derived bioactive compounds. Note how, in contrast to terrestrial agriculture, industrial cultivation of seaweeds does not require arable land, freshwater, fertilizers, and pesticides. The valorization mode could also facilitate the sequestration of more greenhouse gas CO2 as daily-used chemicals, since the aerial productivity of seaweeds is much higher than that of terrestrial plants. This review first summarizes any scientific evidence that K. alvarezii extracts possess anti-photoaging properties. Next, realizing that conventional extraction methods may prevent the use of such extracts in cosmetic formulations, this review discusses the feasibility of obtaining various K. alvarezii compounds using green methods. Lastly, a perspective on several potential challenges to the proposed valorization scheme, as well as the potential solutions, is offered.


Subject(s)
Edible Seaweeds , Rhodophyta , Seaweed , Animals , Carrageenan/chemistry , Rhodophyta/chemistry , Seaweed/chemistry
4.
Fitoterapia ; 172: 105757, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38008129

ABSTRACT

Dragon's blood is a red resin obtained from different plants and is considered highly efficacious and used in medicine owing its wound healing function. Two new compounds (7 and 8) were isolated from the dragon's blood of Daemonorops draco fruits, along with eight known compounds (1-6, 9, and 10). Their structures, including their absolute configurations, were elucidated by nuclear magnetic resonance (NMR), matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and electronic circular dichroism (ECD) analysis. According to the spectroscopic data, 8 was determined to be a quinone methide derivative of flavan and 7 was deduced to be a flavan trimer. All compounds were evaluated for their anti-osteoclastogenesis activity, compound 1 and 7 exhibited anti-osteoclastogenesis activity with IC50 values of 31.3 and 36.8 µM, respectively.


Subject(s)
Calamus , Osteogenesis , Plant Extracts , Molecular Structure , Plant Extracts/chemistry , Plants/chemistry , Magnetic Resonance Spectroscopy
5.
Int J Food Sci ; 2023: 3245210, 2023.
Article in English | MEDLINE | ID: mdl-37780095

ABSTRACT

Toxic compounds can induce the formation of free radicals (reactive oxygen species (ROS)) which can trigger damage and decrease cell viability. Clove (Syzygium aromaticum) contains phenolic compounds that are useful as antioxidants which can reduce ROS toxicity. However, little is known about the antitoxin activity of clove extract. Therefore, this study is aimed at determining the effect of ethanolic clove extract as an antitoxin agent against malachite green (MG) mutagen using the yeast Saccharomyces cerevisiae as a model. The methods used to analyze the ability of ethanolic clove extract as antitoxin were decolorization assay and cell viability test towards MG. The phenol contents of leaf and bud extract were 441.28 and 394.73 mg GAE g-1 extract, respectively. Clove leaf extract has strong antioxidant activity in vitro (IC50 9.29 ppm for 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 29.57 for 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS)). Liquid chromatography quadrupole-mass spectrometry (LC-MS/MS) analysis showed the presence of 4-O-caffeoylquinic acid and several other bioactive compounds, in which these compounds had bioactivity against toxic compound. The addition of extract reduced the ability of S. cerevisiae to decolorize malachite green but increased cell viability. Based on the data, clove leaf extract shows the potential antitoxin activity. This research should facilitate a preliminary study to investigate the antitoxin agent derived from cloves leaf extract. Further research to analyze the antitoxin mechanism of this extract in yeast model is interesting to do to provide a comprehensive insight into the potential antitoxin agents of clove leaf extract.

6.
Heliyon ; 9(5): e15533, 2023 May.
Article in English | MEDLINE | ID: mdl-37159693

ABSTRACT

Alloxan and streptozotocin are the most popular diabetogenic agents in assessing antidiabetic activity. Self-recovery, indicated by unstable hyperglycemia conditions in animals induced by those agents, becomes a significant disturbance to accurate examination. This study aimed to evaluate and reveal the self-recovery incidence in Sprague Dawley rats induced with alloxan and streptozotocin. Each dose of alloxan (120, 150, 180 mg/kg) and streptozotocin (40, 50, 60 mg/kg) was administered through intraperitoneal injection. The results showed that each dose of alloxan induced self-recovery incidence. In rats given streptozotocin, self-recovery only occurred at a dose of 40 mg/kg. The other higher doses of streptozotocin induced stable hyperglycemia. Furthermore, this study revealed two types of self-recovery, namely temporary recovery and end recovery. Temporary recovery occurred in rats given alloxan, during end recovery in alloxan and streptozotocin. The examination of insulin levels showed a significant reduction in the temporary recovery and stable diabetic rats compared to the end recovery rats. Besides, the bodyweight of rats was also affected by different incidences of self-recovery. This study recommends paying more attention to the possibility of self-recovery in obtaining animal models of diabetes, emphasizing the determination of suitable diabetogenic agents and proper doses to reduce self-recovery incidences. The finding of temporary recovery in rats receiving alloxan indicates that alloxan induced delayed diabetes in rats.

7.
Life (Basel) ; 13(3)2023 Mar 10.
Article in English | MEDLINE | ID: mdl-36983909

ABSTRACT

Exposure to UV/infrared (IR) radiation is the main extrinsic factor that changes skin morphology and affects the increase in reactive oxygen species (ROS) in skin aging. Ten varieties of andaliman (Zanthoxylum acanthopodium DC.) fruit are presumed to have skin anti-aging compounds via an enzyme-inhibition mechanism. This study aims to compare ten essential oils (EOs) of andaliman fruit varieties, group them according to their varieties, and obtain the chemical components that can be used as potential skin anti-aging agents using molecular docking. EOs were isolated by hydrodistillation, and the determination of the chemical compounds was performed using gas chromatography-mass spectrometry (GC-MS). Using the Orange data mining software, a heatmap was used for grouping and showing the abundance of the compounds of ten varieties. Finally, molecular docking was conducted using the software AutoDockTools 1.5.7. There were 97 chemical components in the ten EOs of andaliman fruit varieties, with the main chemical components being geranyl acetate (29.87%) and D-limonene (26.49%), and they were grouped into three clusters. The chemical components that are prospective candidates as skin anti-aging agents are geranyl acetate and D-limonene, found in abundance in the Sihalus variety of andaliman fruit. These can be developed for applications in the pharmaceutical industry.

8.
Life (Basel) ; 13(2)2023 Feb 03.
Article in English | MEDLINE | ID: mdl-36836796

ABSTRACT

The use of herbal medicines in recent decades has increased because their side effects are considered lower than conventional medicine. Unani herbal medicines are often used in Southern Asia. These herbal medicines are usually composed of several types of medicinal plants to treat various diseases. Research on herbal medicine usually focuses on insight into the composition of plants used as ingredients. However, in the present study, we extended to the level of metabolites that exist in the medicinal plants. This study aimed to develop a predictive model of the Unani therapeutic usage based on its constituent metabolites using deep learning and data-intensive science approaches. Furthermore, the best prediction model was then utilized to extract important metabolites for each therapeutic usage of Unani. In this study, it was observed that the deep neural network approach provided a much better prediction model than other algorithms including random forest and support vector machine. Moreover, according to the best prediction model using the deep neural network, we identified 118 important metabolites for nine therapeutic usages of Unani.

9.
Metabolites ; 13(2)2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36837775

ABSTRACT

The potential application of Xylocarpus granatum, a mangrove species, as traditional medicine has been widely linked to its high secondary metabolite and antioxidant contents. However, few studies have been reported to identify and classify active metabolites responsible for such excellent biological activities. Therefore, the aim of this work was to determine the antioxidant activity, identify the metabolite profiles, and predict the metabolites acting as antioxidants in X. granatum extract using a gas chromatography-mass spectrometry (GC-MS)-based metabolomics approach. The seeds, stems, fruit peel, pulp, leaves, and twigs of X. granatum were macerated with ethanol. Each extract was analyzed with GC-MS, and the data were processed using mass spectrometry data-independent analysis (MS-DIAL) software to identify the metabolites. The IC50 value of plant parts of X. granatum ranged from 7.73 to 295 ppm. A total of 153 metabolites were identified and confirmed in the X. granatum extracts. Among the identified metabolites, epicatechin and epigallocatechin were the two most abundant in the stem extracts and are expected to have the greatest potential as antioxidants. Principal component analysis (PCA) succeeded in grouping all parts of the plant into three groups based on the composition of the metabolites: group 1 (stems, fruit peel, and twigs), group 2 (seeds and pulp), and group 3 (leaves).

10.
Molecules ; 27(23)2022 Nov 30.
Article in English | MEDLINE | ID: mdl-36500458

ABSTRACT

Methicillin-resistant Staphylococcus aureus (MRSA) is an S. aureus strain that has developed resistance against ß-lactam antibiotics, resulting in a scarcity of a potent cure for treating Staphylococcus infections. In this study, the anti-MRSA and antioxidant activity of the Indonesian mangrove species Sonneratia caseolaris, Avicennia marina, Rhizophora mucronata, and Rhizophora apiculata were studied. Disk diffusion, DPPH, a brine shrimp lethality test, and total phenolic and flavonoid assays were conducted. Results showed that among the tested mangroves, ethanol solvent-based S. caseolaris leaves extract had the highest antioxidant and anti-MRSA activities. An antioxidant activity assay showed comparable activity when compared to ascorbic acid, with an IC50 value of 4.2499 ± 3.0506 ppm and 5.2456 ± 0.5937 ppm, respectively, classifying the extract as a super-antioxidant. Moreover, S. caseolaris leaves extract showed the highest content of strongly associated antioxidative and antibacterial polyphenols, with 12.4% consisting of nontoxic flavonoids with the minimum inhibitory concentration of the ethanol-based S. caseolaris leaves extract being approximately 5000 ppm. LC-MS/MS results showed that phenolic compounds such as azelaic acid and aspirin were found, as well as flavonoid glucosides such as isovitexin and quercitrin. This strongly suggested that these compounds greatly contributed to antibacterial and antioxidant activity. Further research is needed to elucidate the interaction of the main compounds in S. caseolaris leaves extract in order to confirm their potential either as single or two or more compounds that synergistically function as a nontoxic antioxidant and antibacterial against MRSA.


Subject(s)
Lythraceae , Methicillin-Resistant Staphylococcus aureus , Rhizophoraceae , Antioxidants/pharmacology , Antioxidants/analysis , Staphylococcus aureus , Ethanol/analysis , Chromatography, Liquid , Tandem Mass Spectrometry , Plant Leaves/chemistry , Microbial Sensitivity Tests , Plant Extracts/chemistry , Flavonoids/pharmacology , Flavonoids/analysis , Phenols/pharmacology , Phenols/analysis , Anti-Bacterial Agents/chemistry
11.
Life (Basel) ; 12(8)2022 Jul 27.
Article in English | MEDLINE | ID: mdl-36013310

ABSTRACT

Uric acid, which causes gout, is the end product of purine catabolism, synthesized by xanthine oxidase, guanine deaminase, adenine deaminase, purine nucleoside phosphorylase, and 5-nucleotidase II. Garlic contains bioactive compounds that have potential as antigout agents. Garlic fermentation to black garlic changes its components, which may affect its beneficial potential. This study aimed to select types of garlic (Indonesian garlic) and imported garlic, and to predict the interaction between their compounds and five target proteins through an in silico approach and a multivariate analysis, namely partial least squares-discriminant analysis (PLS-DA), to determine their different constituents. The target proteins were collected from open-access databases, and the compounds were identified using mass spectrometry data. The PLS-DA score plot succeeded in classifying the samples into three classes, with each class having a discriminatory compound. Based on the in silico studies, we predicted the best binding score of the five target proteins with seven important compounds: alliin, N-acetyl-S-allyl-L-cysteine, ajoene, pyridoxal, pyridoxamine, 4-guanidinobutyric acid, and D-glucosamine. These were mostly found in black garlic, with no different concentrations in the local and imported samples. Through this approach, we concluded that black garlic is a better candidate for antigout treatments, as several compounds were found to have good binding to the target proteins.

12.
J Agric Food Chem ; 70(8): 2695-2700, 2022 Mar 02.
Article in English | MEDLINE | ID: mdl-35167297

ABSTRACT

Kaempferol glycosides are functional components of jack bean. The chemical stability of kaempferol glycosides under simulated food processing conditions was evaluated in this study by subjecting the methanol extract and each compound to heat treatment. During the heat treatment, rearrangement of the anisoyl group on the rhamnose moiety of the kaempferol glycoside was observed, followed by hydrolysis upon long-term heat treatment. One of the two regioisomers produced under heating conditions showed higher α-glucosidase inhibitory activity than the dominant anisoyl kaempferol glycoside. This rearrangement reaction was also observed upon the heat treatment of methyl-3-O-anisoyl-rhamnose, with the rearrangement from the 3-position to the 2-position occurring preferentially. The approach adopted in this study can be used to design appropriate food processing conditions, which, in turn, will increase the functional value of foods.


Subject(s)
Canavalia , Glycosides , Canavalia/chemistry , Glycosides/chemistry , Kaempferols/pharmacology , alpha-Glucosidases
13.
AMB Express ; 12(1): 14, 2022 Feb 10.
Article in English | MEDLINE | ID: mdl-35142937

ABSTRACT

Incorporating antimicrobial components into food packaging materials can prevent microbial contamination. Fungus combs could be an alternative source of natural antimicrobial agents. In this study, n-hexane, ethyl acetate, methanol, and water extracts were obtained from fungus combs isolated from Indomalayan termite (Macrotermes gilvus Hagen) mound. Their antibacterial and antifungal activities against food spoilage microorganisms including Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 27853, Staphylococcus aureus ATCC 25923, Aspergillus flavus, and Aspergillus niger were evaluated by Kirby-Bauer disc diffusion and microdilution. Results showed that ethyl acetate extract formed the largest diameter inhibition zone for all tested bacteria and fungi, exhibited antibacterial activity against all tested bacteria with minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values of 0.39 and 0.78 mg/mL, respectively, and suppressed A. flavus and A. niger with an MIC value of 0.78 mg/mL. This extract contained guaiacol and syringol, which were predicted as the main antimicrobial components in fungus comb. n-Hexane extract only inhibited Gram-positive bacteria. S. aureus ATCC 25923 was the most sensitive to all the extracts, and A. flavus was more sensitive than A. niger. All these fungus comb extracts exhibited antimicrobial activity against E. coli ATCC 25922, P. aeruginosa ATCC 27853, S. aureus ATCC 25923, A. flavus, and A. niger. This study revealed that fungus comb extracts, especially ethyl acetate, could be considered as a new antimicrobial agent.

14.
J Nat Med ; 76(1): 132-143, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34510371

ABSTRACT

Adenostemma lavenia (L.) Kuntze (Asteraceae) is widely distributed in tropical regions of East Asia, and both A. lavenia and A. madurense (DC) are distributed in Japan. In China and Taiwan, A. lavenia is used as a folk medicine for treating lung congestion, pneumonia, and hepatitis. However, neither phylogenic nor biochemical analysis of this plants has been performed to date. We have reported that the aqueous extract of Japanese A. lavenia contained high levels of ent-11α-hydroxy-15-oxo-kaur-16-en-19-oic acid (11αOH-KA; a kaurenoic acid), which is a potent anti-melanogenic compound. Comparison of chloroplast DNA sequences suggested that A. lavenia is originated from A. madurense. Analyses of kaurenoic acids revealed that Japanese A. lavenia and A. madurense contained high levels of 11αOH-KA and moderate levels of 11α,15OH-KA, while Taiwanese A. lavenia mainly contained 9,11αOH-KA. The diverse biological activities (downregulation of Tyr, tyrosinase, gene expression [anti-melanogenic] and iNOS, inducible nitric oxide synthase, gene expression [anti-inflammatory], and upregulation of HO-1, heme-oxygenase, gene expression [anti-oxidative]) were associated with 11αOH-KA and 9,11αOH-KA but not with 11α,15OH-KA. Additionally, 11αOH-KA and 9,11αOH-KA decreased Keap1 (Kelch-like ECH-associated protein 1) protein levels, which was accompanied by upregulation of protein level and transcriptional activity of Nrf2 (NF-E2-related factor-2) followed by HO-1 gene expression. 11αOH-KA and 9,11αOH-KA differ from 11α,15OH-KA in terms of the presence of a ketone (αß-unsaturated carbonyl group, a thiol modulator) at the 15th position; therefore, thiol moieties on the target proteins, including Keap1, may be important for the biological activities of 11αOH-KA and 9,11αOH-KA and A. lavenia extract.


Subject(s)
Asteraceae , NF-E2-Related Factor 2 , Diterpenes , Heme Oxygenase-1/metabolism , Japan , Kelch-Like ECH-Associated Protein 1 , NF-E2-Related Factor 2/metabolism , Taiwan
15.
J Ethnopharmacol ; 282: 114618, 2022 Jan 10.
Article in English | MEDLINE | ID: mdl-34508803

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Syzygium polyanthum (Wight) Walp leaves are traditionally used to cure diabetes in many regions of Indonesia. Traditional use involves boiling the leaves until the water is reduced to half volume, and then the decoction is taken 1-2 times daily. Despite several studies reporting the antidiabetic activity of this plant, bioactive compounds have not been well identified. AIM OF THE STUDY: Indonesia is one of the countries with the highest diabetes cases, particularly type 2 diabetes mellitus (T2DM). Few people have access to modern medicinal treatment; thus, the role of antidiabetic traditional medicine has become increasingly important. This research aimed to identify α-glucosidase inhibitors from S. polyathum leaves using a metabolomics approach. When the active compounds of S. polyathum are properly identified, the quality of the herb can be more easily controlled. MATERIALS AND METHODS: The dried leaves of S. polyanthum were extracted by a comprehensive extraction method using a solvent combination of n-hexane, acetone, and water in a gradient, resulting in a total of 42 fractions. All fractions were subjected to an in vitro α-glucosidase inhibition test and chemical profile analysis using Nuclear Magnetic Resonance (NMR) and high performance liquid chromatography (HPLC). Orthogonal projection least square (OPLS) analysis was used to correlate the two data to identify NMR signals, and HPLC chromatogram peaks correlated to the activity. 2D NMR and ultra-high-performance liquid chromatography coupled to high-resolution mass spectrometry (UHPLC-HRMS) analyses were also used to give more precise compound identification. The activity of the identified active compounds was confirmed by an in silico technique. RESULTS AND DISCUSSION: The results of the α-glucosidase activity test showed that the most active fractions were obtained from solvents with medium polarity: Fractions 9 and 10 (F9 and F10), obtained from gradient acetone-water 4:1 and 3:2, respectively. The IC50 values of F9 and F10 were 24.8 and 31.8 µg/mL, respectively. NMR data showed that F9 had more intense and diverse signals in the aromatic region than F10. OPLS analysis results showed that some typical flavonoid signals abundant in F9 positively correlated with α-glucosidase activity. 2D NMR and UHPLC-HRMS analysis of F9 led to the conclusion that these signals could be attributed to myricetin-3-O-rhamnoside (myricitrin) and epigallocatechin-3-gallate (EGCG). In silico analysis confirmed these results, as myricitrin and EGCG had binding energies resembling acarbose as a positive control (-8.47, -8.19, and -10.13, respectively). CONCLUSIONS: NMR and HPLC-metabolomics successfully identified myricitrin and EGCG as α-glucosidase inhibitors from S. polyanthum leaves, and docking analysis validated their inhibitory activity. The results of this study justified the traditional use of S. polyanthum as an antidiabetes herbal.


Subject(s)
Glycoside Hydrolase Inhibitors/pharmacology , Metabolomics , Molecular Docking Simulation , Plant Extracts/pharmacology , Plant Leaves/chemistry , Syzygium/chemistry , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/pharmacology , Phytotherapy , Plant Extracts/chemistry , Structure-Activity Relationship , alpha-Glucosidases/metabolism
16.
Adv Pharmacol Pharm Sci ; 2021: 2119634, 2021.
Article in English | MEDLINE | ID: mdl-34589709

ABSTRACT

Research on antioxidants has been gaining worldwide attention because of their essential applications for medicinal purposes. In this study, we conducted bioprospecting of six Asteraceae plants as the source of antiaging and antioxidant agents. Water and chloroform fractions from Ageratum conyzoides L., Dichrocephala integrifolia (L.f.) Kuntze, Galinsoga parviflora (Cav.), Mikania micrantha Kunth, Sphagneticola trilobata (L.) Pruski, and Synedrella nodiflora L. were collected and assayed for their in vitro antioxidant activities and potential antiaging properties using the yeast Schizosaccharomyces pombe as the model organism. Based on the in vitro assay, the water fractions of S. trilobata showed a strong antioxidant activity. Interestingly, all treatment solutions promoted the stress tolerance phenotype of S. pombe to strong H2O2-induced oxidative stress conditions. Moreover, compared with the treatments without plant extract/fraction, all extract and fraction treatments, except the chloroform fractions of A. conyzoides, promoted yeast cell longevity. Strong induction of mitochondria activity was found following the treatments with the extracts and fractions of S. nodiflora, D. integrifolia, and M. micrantha and likely mimicked the calorie restriction-induced lifespan. Interestingly, S. nodiflora water fractions significantly upregulated the mRNA transcripts of the Pap1-mediated core environmental stress response, namely, ctt1 gene in S. pombe. These data indicated that the fractions of Asteraceae plants had potential antioxidant and antiaging activities through various cellular modulations. S. nodiflora water fraction has been shown to have antioxidant and antiaging activities in S. pombe, by modulating stress tolerance response, inducing mitochondrial activity, and increasing the ctt1 gene expression. Compounds analysis identified that S. nodiflora water fraction contained some primarily compounds including oxyphyllacinol, valine, and sugiol.

17.
J Stem Cells Regen Med ; 17(1): 35-41, 2021.
Article in English | MEDLINE | ID: mdl-34434006

ABSTRACT

Eugenol, as the main component in clove, has neuroprotective abilities, including its effect to learning memory of mice. However, there is no evidence showing whether eugenol can expand the growth of dendrites in the brain. The objective of this research was to examine the effects of eugenol towards dendritic complexity of neurons, neurogenesis, and memory performance in hippocampus. A total of 21 mice were divided into three groups; (i) mice were administered 30 mg/kg bw eugenol orally, (ii) mice were administered 100 mg/kg bw eugenol orally, and (iii) mice were administered distilled water as control. Mice were kept for 30 consecutive days following the standard animal housing. The memory performance was observed through the Y-arm maze alternation, Novel Object Recognition (NOR), and Morris Water Maze (MWM) test. The brain was dissected and stained with FD Rapid Golgi StainingTM kit to observe dendrites in the dentate gyrus (DG) and cornu ammonis 1 (CA1) region; and Haematoxylin-Eosin (HE) staining to assess neurogenesis in the DG. Our results showed that eugenol enhanced putative neural stem cells (NPCs) and granular cells (GC) number, and also decrease neuronal cell death in DG (p<0.0001). Eugenol also increased dendritic complexity of neurons in DG region; while in CA1, eugenol has given a positive effect only on the basal area. Eugenol increased spatial and recognition memory in mice, indicated by a higher number of correct alternations and discrimination ratio compared to the control group (p<0.05), although escape latency in MWM did not show significant effect (p>0.05). As analyzed by behavioral tests and Golgi staining of brain tissue, eugenol can increase memory performance, neurogenesis, and dendritic complexity of neurons in the DG and CA1 basal region of brain in mice.

18.
Life (Basel) ; 11(8)2021 Aug 23.
Article in English | MEDLINE | ID: mdl-34440610

ABSTRACT

BACKGROUND: We performed in silico prediction of the interactions between compounds of Jamu herbs and human proteins by utilizing data-intensive science and machine learning methods. Verifying the proteins that are targeted by compounds of natural herbs will be helpful to select natural herb-based drug candidates. METHODS: Initially, data related to compounds, target proteins, and interactions between them were collected from open access databases. Compounds are represented by molecular fingerprints, whereas amino acid sequences are represented by numerical protein descriptors. Then, prediction models that predict the interactions between compounds and target proteins were constructed using support vector machine and random forest. RESULTS: A random forest model constructed based on MACCS fingerprint and amino acid composition obtained the highest accuracy. We used the best model to predict target proteins for 94 important Jamu compounds and assessed the results by supporting evidence from published literature and other sources. There are 27 compounds that can be validated by professional doctors, and those compounds belong to seven efficacy groups. CONCLUSION: By comparing the efficacy of predicted compounds and the relations of the targeted proteins with diseases, we found that some compounds might be considered as drug candidates.

19.
Sci Rep ; 11(1): 6080, 2021 03 16.
Article in English | MEDLINE | ID: mdl-33727582

ABSTRACT

Local Xylocarpus granatum leaves were extracted by ethyl acetate solvent and characterized by TLC fingerprinting and 2D 1H NMR spectroscopy to contain phenolic compounds as well as several organic and amino acids as metabolic byproducts, such as succinic acid and acetic acid. Traces of flavonoids and other non-categorized phenolic compounds exhibited intermediate antioxidant activity (antioxidant IC50 84.93 ppm) as well as anticancer activity against HeLa, T47D, and HT-29 cell lines; which the latter being most effective against HT-29 with Fraction 5 contained the strongest activity (anticancer IC50 23.12 ppm). Extracts also behaved as a natural growth factor and nonlethal towards brine shrimps as well as human adipose-derived stem cell hADSC due to antioxidative properties. A stability test was performed to examine how storage conditions factored in bioactivity and phytochemical structure. Extracts were compared with several studies about X. granatum leaves extracts to evaluate how ethnogeography and ecosystem factored on biologically active compounds. Further research on anticancer or antioxidant mechanism on cancer cells is needed to determine whether the extract is suitable as a candidate for an anticancer drug.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Meliaceae/chemistry , Neoplasms/drug therapy , Plant Extracts/pharmacology , Plant Leaves/chemistry , Acetates/chemistry , Adipose Tissue/metabolism , Animals , Antineoplastic Agents, Phytogenic/chemistry , Artemia/metabolism , Drug Screening Assays, Antitumor , HT29 Cells , HeLa Cells , Humans , MCF-7 Cells , Neoplasms/metabolism , Plant Extracts/chemistry , Stem Cells/metabolism
20.
Anim Biosci ; 34(3): 434-442, 2021 Mar.
Article in English | MEDLINE | ID: mdl-32898948

ABSTRACT

OBJECTIVE: This study aims to evaluate the influence of dietary flavonoids on the growth performance, blood and intestinal profiles, and carcass characteristics of broilers by employing a meta-analysis method. METHODS: A database was built from published studies which have reported on the addition of various levels of flavonoids from herbs into broiler diets and then monitored growth performance, blood constituents, carcass proportion and small intestinal morphology. A total of 42 articles were integrated into the database. Several forms of flavonoids in herbs were applied in the form of unextracted and crude extracts. The database compiled was statistically analyzed using mixed model methodology. Different studies were considered as random effects, and the doses of flavonoids were treated as fixed effects. The model statistics used were the p-values and the Akaike information criterion. The significance of an effect was stated when its p-value was <0.05. RESULTS: Dietary flavonoids increased (quadratic pattern; p<0.05) the average daily gain of broilers in the finisher phase. There was a reduction (p<0.01) in the feed conversion ratio of the broilers both in the starter (linear pattern) and finisher phases (quadratic pattern). The mortality rate tended to decrease linearly (p<0.1) with the addition of flavonoids, while the carcass parameter was generally not influenced. A reduction (p<0.001) in cholesterol and malondialdehyde concentrations (both linearly) was observed, while super oxide dismutase activity increased linearly (p<0.001). Increasing the dose of flavonoids increased (p<0.01) the villus height (VH) and villus height and crypt depth (VH:CD) ratio (p<0.05) in the duodenum. Similarly, the VH:CD ratio was elevated (p<0.001) in the jejunum following flavonoid supplementation. CONCLUSION: Increasing levels of flavonoids in broilers diet leads to an improvement in growth performance, blood constituents, carcass composition and small intestinal morphology.

SELECTION OF CITATIONS
SEARCH DETAIL