Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Geochem Health ; 44(4): 1355-1376, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34241721

ABSTRACT

Amelioration and remediation technology was developed for phosphogypsum utilization in Haplic Chernozem of South-European facies (Rostov Region). The technology comprises phosphogypsum dispersed application into the soil layer of 20-45 cm during intra-soil milling. In the model experiment, the phosphogypsum doses 0 (control), 10, 20, and 40 t ha-1 were studied. The Cd thermodynamic forms in soil solution were calculated via the developed mathematical chemical-thermodynamic model and program ION-3. The form of ion in soil solution (or water extract) was considered accounting the calcium-carbonate equilibrium (CCE) and association of ion pairs CaCO30; CaSO40, MgCO30, MgSO40, CaHCO3+, MgHCO3+, NaCO3-, NaSO4-, CaOH+, MgOH+. For calculation of the equilibrium of microelements concentration in soil solution ion including heavy metals (HMs), the coefficient of microelement association kas was proposed. According to calculations, Cd2+ ion in soil solution was mostly bounded to associates CdOH+, partly to associates CdCO30 and CdHCO3+. The calculated kas of Cd was 1.24 units in the control option of experiment and decreased to 0.95 units at phosphogypsum dose 40 t ha-1. The ratio of "active [Cd2+] to total Cd" reduced from 33.5% in control option to 28.0% in the option of phosphogypsum dose 40 t ha-1. The biogeochemical barrier for penetration of HMs from soil to plant roots was high after application of phosphogypsum. According to calculation by ION-3, the standard soil environmental limitations overestimate the toxicity of Cd in soil solution. New decision for intra-soil milling and simultaneous application of phosphogypsum was developed to provide the environmentally safe waste recycling.


Subject(s)
Metals, Heavy , Soil Pollutants , Metals, Heavy/analysis , Plants , Recycling , Soil , Soil Pollutants/analysis
2.
Environ Geochem Health ; 43(6): 2407-2421, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33025349

ABSTRACT

The concentrations of ∑16 priority polycyclic aromatic hydrocarbons (PAHs) for soils, roots, and above-ground parts of reed (Phragmites australis Cav.) were determined on different monitoring plots located near the city of Kamensk-Shakhtinsky, southern Russia, where historically received industrial sewage and sludge. The total PAHs concentration in monitoring soil plots was significantly higher than those in the background site which situated at the distance of 2 km from the contamination source. Accordingly, the maximum accumulation was found for phenanthrene and chrysene among the 16 priority PAHs in most of the plant samples collected in the impact zone. The effects of PAHs' pollution on changes of Phragmites australis Cav. cellular and subcellular organelles in the studied monitoring sites were also determined using optical and electron microscopy, respectively. The obtained data showed that increasing of PAHs contamination negatively affected the ultrastructural changes of the studied plants. Phragmites australis Cav. showed a high level of adaptation to the effect of stressors by using tissue and cell levels. In general, the detected alterations under the PAHs effect were possibly connected to changes in biochemical and histochemical parameters as a response for reactive oxygen species and as a protective response against oxidative stress. The obtained results introduce innovative findings of cellular and subcellular changes in plants exposed to ∑16 priority PAHs as very persistent and toxic contaminants.


Subject(s)
Organelles/drug effects , Poaceae/cytology , Poaceae/drug effects , Polycyclic Aromatic Hydrocarbons/pharmacokinetics , Soil Pollutants/pharmacokinetics , Environmental Monitoring , Organelles/chemistry , Plant Cells/drug effects , Plant Cells/ultrastructure , Plant Components, Aerial/cytology , Plant Components, Aerial/drug effects , Plant Roots/cytology , Plant Roots/drug effects , Plant Roots/ultrastructure , Polycyclic Aromatic Hydrocarbons/analysis , Russia , Sewage , Soil Pollutants/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...