Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
1.
Neurology ; 102(12): e209428, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38843489

ABSTRACT

BACKGROUND AND OBJECTIVES: Current practice in clinical neurophysiology is limited to short recordings with conventional EEG (days) that fail to capture a range of brain (dys)functions at longer timescales (months). The future ability to optimally manage chronic brain disorders, such as epilepsy, hinges upon finding methods to monitor electrical brain activity in daily life. We developed a device for full-head subscalp EEG (Epios) and tested here the feasibility to safely insert the electrode leads beneath the scalp by a minimally invasive technique (primary outcome). As secondary outcome, we verified the noninferiority of subscalp EEG in measuring physiologic brain oscillations and pathologic discharges compared with scalp EEG, the established standard of care. METHODS: Eight participants with pharmacoresistant epilepsy undergoing intracranial EEG received in the same surgery subscalp electrodes tunneled between the scalp and the skull with custom-made tools. Postoperative safety was monitored on an inpatient ward for up to 9 days. Sleep-wake, ictal, and interictal EEG signals from subscalp, scalp, and intracranial electrodes were compared quantitatively using windowed multitaper transforms and spectral coherence. Noninferiority was tested for pairs of neighboring subscalp and scalp electrodes with a Bland-Altman analysis for measurement bias and calculation of the interclass correlation coefficient (ICC). RESULTS: As primary outcome, up to 28 subscalp electrodes could be safely placed over the entire head through 1-cm scalp incisions in a ∼1-hour procedure. Five of 10 observed perioperative adverse events were linked to the investigational procedure, but none were serious, and all resolved. As a secondary outcome, subscalp electrodes advantageously recorded EEG percutaneously without requiring any maintenance and were noninferior to scalp electrodes for measuring (1) variably strong, stage-specific brain oscillations (alpha in wake, delta, sigma, and beta in sleep) and (2) interictal spikes peak-potentials and ictal signals coherent with seizure propagation in different brain regions (ICC >0.8 and absence of bias). DISCUSSION: Recording full-head subscalp EEG for localization and monitoring purposes is feasible up to 9 days in humans using minimally invasive techniques and noninferior to the current standard of care. A longer prospective ambulatory study of the full system will be necessary to establish the safety and utility of this innovative approach. TRIAL REGISTRATION INFORMATION: clinicaltrials.gov/study/NCT04796597.


Subject(s)
Electrodes, Implanted , Electroencephalography , Feasibility Studies , Humans , Male , Female , Adult , Electroencephalography/methods , Drug Resistant Epilepsy/surgery , Drug Resistant Epilepsy/physiopathology , Young Adult , Middle Aged , Minimally Invasive Surgical Procedures/methods , Minimally Invasive Surgical Procedures/instrumentation , Scalp , Brain/surgery , Brain/physiopathology
2.
Epilepsy Res ; 202: 107356, 2024 May.
Article in English | MEDLINE | ID: mdl-38564925

ABSTRACT

Implantable brain recording and stimulation devices apply to a broad spectrum of conditions, such as epilepsy, movement disorders and depression. For long-term monitoring and neuromodulation in epilepsy patients, future extracranial subscalp implants may offer a promising, less-invasive alternative to intracranial neurotechnologies. To inform the design and assess the safety profile of such next-generation devices, we estimated extracranial complication rates of deep brain stimulation (DBS), cranial peripheral nerve stimulation (PNS), responsive neurostimulation (RNS) and existing subscalp EEG devices (sqEEG), as proxy for future implants. Pubmed was searched systematically for DBS, PNS, RNS and sqEEG studies from 2000 to February 2024 (48 publications, 7329 patients). We identified seven categories of extracranial adverse events: infection, non-infectious cutaneous complications, lead migration, lead fracture, hardware malfunction, pain and hemato-seroma. We used cohort sizes, demographics and industry funding as metrics to assess risks of bias. An inverse variance heterogeneity model was used for pooled and subgroup meta-analysis. The pooled incidence of extracranial complications reached 14.0%, with infections (4.6%, CI 95% [3.2 - 6.2]), surgical site pain (3.2%, [0.6 - 6.4]) and lead migration (2.6%, [1.0 - 4.4]) as leading causes. Subgroup analysis showed a particularly high incidence of persisting pain following PNS (12.0%, [6.8 - 17.9]) and sqEEG (23.9%, [12.7 - 37.2]) implantation. High rates of lead migration (12.4%, [6.4 - 19.3]) were also identified in the PNS subgroup. Complication analysis of DBS, PNS, RNS and sqEEG studies provides a significant opportunity to optimize the safety profile of future implantable subscalp devices for chronic EEG monitoring. Developing such promising technologies must address the risks of infection, surgical site pain, lead migration and skin erosion. A thin and robust design, coupled to a lead-anchoring system, shall enhance the durability and utility of next-generation subscalp implants for long-term EEG monitoring and neuromodulation.


Subject(s)
Deep Brain Stimulation , Humans , Deep Brain Stimulation/adverse effects , Deep Brain Stimulation/instrumentation , Deep Brain Stimulation/methods , Electrodes, Implanted/adverse effects , Electroencephalography/methods , Electroencephalography/instrumentation , Seizures/diagnosis
3.
Ann Neurol ; 95(4): 743-753, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38379195

ABSTRACT

OBJECTIVE: This study was undertaken to determine the effects of antiseizure medications (ASMs) on multidien (multiday) cycles of interictal epileptiform activity (IEA) and seizures and evaluate their potential clinical significance. METHODS: We retrospectively analyzed up to 10 years of data from 88 of the 256 total adults with pharmacoresistant focal epilepsy who participated in the clinical trials of the RNS System, an intracranial device that keeps records of IEA counts. Following adjunctive ASM trials, we evaluated changes over months in (1) rates of self-reported disabling seizures and (2) multidien IEA cycle strength (spectral power for periodicity between 4 and 40 days). We used a survival analysis and the receiver operating characteristics to assess changes in IEA as a predictor of seizure control. RESULTS: Among 56 (33.3%) of the 168 adjunctive ASM trials suitable for analysis, ASM introduction was followed by an average 50 to 70% decrease in multidien IEA cycle strength and a concomitant 50 to 70% decrease in relative seizure rate for up to 12 months. Individuals with a ≥50% decrease in IEA cycle strength in the first 3 months of an ASM trial had a higher probability of remaining seizure responders (≥50% seizure rate reduction, p < 10-7) or super-responders (≥90%, p < 10-8) over the next 12 months. INTERPRETATION: In this large cohort, a decrease in multidien IEA cycle strength following initiation of an adjunctive ASM correlated with seizure control for up to 12 months, suggesting that fluctuations in IEA mirror "disease activity" in pharmacoresistant focal epilepsy and may have clinical utility as a biomarker to predict treatment response. ANN NEUROL 2024;95:743-753.


Subject(s)
Electroencephalography , Epilepsies, Partial , Adult , Humans , Retrospective Studies , Seizures/drug therapy , Epilepsies, Partial/drug therapy , Cognition , Anticonvulsants/therapeutic use , Treatment Outcome
4.
J Nucl Med ; 65(3): 470-474, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38212073

ABSTRACT

Ictal SPECT is an informative seizure imaging technique to tailor epilepsy surgery. However, capturing the onset of unpredictable seizures is a medical and logistic challenge. Here, we sought to image planned seizures triggered by direct stimulation of epileptic networks via stereotactic electroencephalography (sEEG) electrodes. Methods: In this case series of 3 adult participants with left temporal epilepsy, we identified and stimulated sEEG contacts able to trigger patient-typical seizures. We administered 99mTc-HMPAO within 12 s of ictal onset and acquired SPECT images within 40 min without any adverse events. Results: Ictal hyperperfusion maps partially overlapped concomitant sEEG seizure activity. In both participants known for periictal aphasia, SPECT imaging revealed hyperperfusion in the speech cortex lacking sEEG coverage. Conclusion: Triggering of seizures for ictal SPECT complements discrete sEEG sampling with spatially complete images of early seizure propagation. This readily implementable method revives interest in seizure imaging to guide resective epilepsy surgery.


Subject(s)
Epilepsy , Seizures , Adult , Humans , Feasibility Studies , Seizures/diagnostic imaging , Tomography, Emission-Computed, Single-Photon , Cerebral Cortex
5.
Epilepsia ; 64 Suppl 3: S1-S2, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37991184
6.
Brain Commun ; 5(5): fcad230, 2023.
Article in English | MEDLINE | ID: mdl-37693813

ABSTRACT

This scientific commentary refers to 'Chronic intracranial EEG recordings and interictal spike rate reveal multiscale temporal modulations in seizure states' by Schroeder et al. (https://doi.org/10.1093/braincomms/fcad205).

7.
Epilepsia ; 64 Suppl 3: S49-S61, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37194746

ABSTRACT

Direct cortical stimulation has been applied in epilepsy for nearly a century and has experienced a renaissance, given unprecedented opportunities to probe, excite, and inhibit the human brain. Evidence suggests stimulation can increase diagnostic and therapeutic utility in patients with drug-resistant epilepsies. However, choosing appropriate stimulation parameters is not a trivial issue, and is further complicated by epilepsy being characterized by complex brain state dynamics. In this article derived from discussions at the ICTALS 2022 Conference (International Conference on Technology and Analysis for Seizures), we succinctly review the literature on cortical stimulation applied acutely and chronically to the epileptic brain for localization, monitoring, and therapeutic purposes. In particular, we discuss how stimulation is used to probe brain excitability, discuss evidence on the usefulness of stimulation to trigger and stop seizures, review therapeutic applications of stimulation, and finally discuss how stimulation parameters are impacted by brain dynamics. Although research has advanced considerably over the past decade, there are still significant hurdles to optimizing use of this technique. For example, it remains unclear to what extent short timescale diagnostic biomarkers can predict long-term outcomes and to what extent these biomarkers add information to already existing biomarkers from passive electroencephalographic recordings. Further questions include the extent to which closed loop stimulation offers advantages over open loop stimulation, what the optimal closed loop timescales may be, and whether biomarker-informed stimulation can lead to seizure freedom. The ultimate goal of bioelectronic medicine remains not just to stop seizures but rather to cure epilepsy and its comorbidities.


Subject(s)
Deep Brain Stimulation , Drug Resistant Epilepsy , Epilepsy , Humans , Epilepsy/diagnosis , Epilepsy/therapy , Brain , Seizures/therapy , Drug Resistant Epilepsy/diagnosis , Drug Resistant Epilepsy/therapy , Deep Brain Stimulation/methods , Biomarkers
8.
J Neurosci ; 43(20): 3696-3707, 2023 05 17.
Article in English | MEDLINE | ID: mdl-37045604

ABSTRACT

During rest, intrinsic neural dynamics manifest at multiple timescales, which progressively increase along visual and somatosensory hierarchies. Theoretically, intrinsic timescales are thought to facilitate processing of external stimuli at multiple stages. However, direct links between timescales at rest and sensory processing, as well as translation to the auditory system are lacking. Here, we measured intracranial EEG in 11 human patients with epilepsy (4 women), while listening to pure tones. We show that, in the auditory network, intrinsic neural timescales progressively increase, while the spectral exponent flattens, from temporal to entorhinal cortex, hippocampus, and amygdala. Within the neocortex, intrinsic timescales exhibit spatial gradients that follow the temporal lobe anatomy. Crucially, intrinsic timescales at baseline can explain the latency of auditory responses: as intrinsic timescales increase, so do the single-electrode response onset and peak latencies. Our results suggest that the human auditory network exhibits a repertoire of intrinsic neural dynamics, which manifest in cortical gradients with millimeter resolution and may provide a variety of temporal windows to support auditory processing.SIGNIFICANCE STATEMENT Endogenous neural dynamics are often characterized by their intrinsic timescales. These are thought to facilitate processing of external stimuli. However, a direct link between intrinsic timing at rest and sensory processing is missing. Here, with intracranial EEG, we show that intrinsic timescales progressively increase from temporal to entorhinal cortex, hippocampus, and amygdala. Intrinsic timescales at baseline can explain the variability in the timing of intracranial EEG responses to sounds: cortical electrodes with fast timescales also show fast- and short-lasting responses to auditory stimuli, which progressively increase in the hippocampus and amygdala. Our results suggest that a hierarchy of neural dynamics in the temporal lobe manifests across cortical and limbic structures and can explain the temporal richness of auditory responses.


Subject(s)
Auditory Cortex , Temporal Lobe , Humans , Female , Temporal Lobe/physiology , Auditory Perception/physiology , Amygdala/physiology , Hippocampus/physiology , Electrocorticography , Auditory Cortex/physiology , Acoustic Stimulation
9.
Epilepsia ; 64 Suppl 3: S25-S36, 2023 Dec.
Article in English | MEDLINE | ID: mdl-36897228

ABSTRACT

Electroencephalography (EEG) has been the primary diagnostic tool in clinical epilepsy for nearly a century. Its review is performed using qualitative clinical methods that have changed little over time. However, the intersection of higher resolution digital EEG and analytical tools developed in the past decade invites a re-exploration of relevant methodology. In addition to the established spatial and temporal markers of spikes and high-frequency oscillations, novel markers involving advanced postprocessing and active probing of the interictal EEG are gaining ground. This review provides an overview of the EEG-based passive and active markers of cortical excitability in epilepsy and of the techniques developed to facilitate their identification. Several different emerging tools are discussed in the context of specific EEG applications and the barriers we must overcome to translate these tools into clinical practice.


Subject(s)
Cortical Excitability , Epilepsy , Humans , Epilepsy/diagnosis , Electroencephalography/methods
10.
11.
Epilepsia ; 2022 Sep 08.
Article in English | MEDLINE | ID: mdl-36073237

ABSTRACT

OBJECTIVE: Epilepsy is characterized by spontaneous seizures that recur at unexpected times. Nonetheless, using years-long electroencephalographic (EEG) recordings, we previously found that patient-reported seizures consistently occur when interictal epileptiform activity (IEA) cyclically builds up over days. This multidien (multiday) interictal-ictal relationship, which is shared across patients, may bear phasic information for forecasting seizures, even if individual patterns of seizure timing are unknown. To test this rigorously in a large retrospective dataset, we pretrained algorithms on data recorded from a group of patients, and forecasted seizures in other, previously unseen patients. METHODS: We used retrospective long-term data from participants (N = 159) in the RNS System clinical trials, including intracranial EEG recordings (icEEG), and from two participants in the UNEEG Medical clinical trial of a subscalp EEG system (sqEEG). Based on IEA detections, we extracted instantaneous multidien phases and trained generalized linear models (GLMs) and recurrent neural networks (RNNs) to forecast the probability of seizure occurrence at a 24-h horizon. RESULTS: With GLMs and RNNs, seizures could be forecasted above chance in 79% and 81% of previously unseen subjects with a median discrimination of area under the curve (AUC) = .70 and .69 and median Brier skill score (BSS) = .07 and .08. In direct comparison, individualized models had similar median performance (AUC = .67, BSS = .08), but for fewer subjects (60%). Moreover, calibration of pretrained models could be maintained to accommodate different seizure rates across subjects. SIGNIFICANCE: Our findings suggest that seizure forecasting based on multidien cycles of IEA can generalize across patients, and may drastically reduce the amount of data needed to issue forecasts for individuals who recently started collecting chronic EEG data. In addition, we show that this generalization is independent of the method used to record seizures (patient-reported vs. electrographic) or IEA (icEEG vs. sqEEG).

12.
Epilepsia ; 2022 May 23.
Article in English | MEDLINE | ID: mdl-35604546

ABSTRACT

To date, the unpredictability of seizures remains a source of suffering for people with epilepsy, motivating decades of research into methods to forecast seizures. Originally, only few scientists and neurologists ventured into this niche endeavor, which, given the difficulty of the task, soon turned into a long and winding road. Over the past decade, however, our narrow field has seen a major acceleration, with trials of chronic electroencephalographic devices and the subsequent discovery of cyclical patterns in the occurrence of seizures. Now, a burgeoning science of seizure timing is emerging, which in turn informs best forecasting strategies for upcoming clinical trials. Although the finish line might be in view, many challenges remain to make seizure forecasting a reality. This review covers the most recent scientific, technical, and medical developments, discusses methodology in detail, and sets a number of goals for future studies.

14.
Chaos ; 31(1): 013138, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33754758

ABSTRACT

Paroxysms are sudden, unpredictable, short-lived events that abound in physiological processes and pathological disorders, from cellular functions (e.g., hormone secretion and neuronal firing) to life-threatening attacks (e.g., cardiac arrhythmia, epileptic seizures, and diabetic ketoacidosis). With the increasing use of personal chronic monitoring (e.g., electrocardiography, electroencephalography, and glucose monitors), the discovery of cycles in health and disease, and the emerging possibility of forecasting paroxysms, the need for suitable methods to evaluate synchrony-or phase-clustering-between events and related underlying physiological fluctuations is pressing. Here, based on examples in epilepsy, where seizures occur preferentially in certain brain states, we characterize different methods that evaluate synchrony in a controlled timeseries simulation framework. First, we compare two methods for extracting the phase of event occurrence and deriving the phase-locking value, a measure of synchrony: (M1) fitting cycles of fixed period-length vs (M2) deriving continuous cycles from a biomarker. In our simulations, M2 provides stronger evidence for cycles. Second, by systematically testing the sensitivity of both methods to non-stationarity in the underlying cycle, we show that M2 is more robust. Third, we characterize errors in circular statistics applied to timeseries with different degrees of temporal clustering and tested with different strategies: Rayleigh test, Poisson simulations, and surrogate timeseries. Using epilepsy data from 21 human subjects, we show the superiority of testing against surrogate time-series to minimize false positives and false negatives, especially when used in combination with M1. In conclusion, we show that only time frequency analysis of continuous recordings of a related bio-marker reveals the full extent of cyclical behavior in events. Identifying and forecasting cycles in biomedical timeseries will benefit from recordings using emerging wearable and implantable devices, so long as conclusions are based on conservative statistical testing.


Subject(s)
Electroencephalography , Epilepsy , Brain , Humans , Seizures
15.
Nat Rev Neurol ; 17(5): 267-284, 2021 05.
Article in English | MEDLINE | ID: mdl-33723459

ABSTRACT

Epilepsy is among the most dynamic disorders in neurology. A canonical view holds that seizures, the characteristic sign of epilepsy, occur at random, but, for centuries, humans have looked for patterns of temporal organization in seizure occurrence. Observations that seizures are cyclical date back to antiquity, but recent technological advances have, for the first time, enabled cycles of seizure occurrence to be quantitatively characterized with direct brain recordings. Chronic recordings of brain activity in humans and in animals have yielded converging evidence for the existence of cycles of epileptic brain activity that operate over diverse timescales: daily (circadian), multi-day (multidien) and yearly (circannual). Here, we review this evidence, synthesizing data from historical observational studies, modern implanted devices, electronic seizure diaries and laboratory-based animal neurophysiology. We discuss advances in our understanding of the mechanistic underpinnings of these cycles and highlight the knowledge gaps that remain. The potential clinical applications of a knowledge of cycles in epilepsy, including seizure forecasting and chronotherapy, are discussed in the context of the emerging concept of seizure risk. In essence, this Review addresses the broad question of why seizures occur when they occur.


Subject(s)
Brain/physiopathology , Chronobiology Phenomena/physiology , Epilepsy/diagnosis , Epilepsy/physiopathology , Animals , Circadian Rhythm/physiology , Electroencephalography/trends , Humans , Periodicity , Sleep Stages/physiology
16.
Clin Neurophysiol Pract ; 6: 41-49, 2021.
Article in English | MEDLINE | ID: mdl-33532669

ABSTRACT

The cyclical structure of epilepsy was recently (re)-discovered through years-long intracranial electroencephalography (EEG) obtained with implanted devices. In this review, we discuss how new revelations from chronic EEG relate to the practice and interpretation of conventional EEG. We argue for an electrographic definition of seizures and highlight the caveats of counting epileptiform discharges in EEG recordings of short duration. Limitations of conventional EEG have practical implications with regard to titrating anti-seizure medications and allowing patients to drive, and we propose that chronic monitoring of brain activity could greatly improve epilepsy care. An impending paradigm shift in epilepsy will involve using next-generation devices for chronic EEG to leverage known biomarkers of disease state.

17.
JAMA Neurol ; 78(4): 454-463, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33555292

ABSTRACT

Importance: Focal epilepsy is characterized by the cyclical recurrence of seizures, but, to our knowledge, the prevalence and patterns of seizure cycles are unknown. Objective: To establish the prevalence, strength, and temporal patterns of seizure cycles over timescales of hours to years. Design, Setting, and Participants: This retrospective cohort study analyzed data from continuous intracranial electroencephalography (cEEG) and seizure diaries collected between January 19, 2004, and May 18, 2018, with durations up to 10 years. A total of 222 adults with medically refractory focal epilepsy were selected from 256 total participants in a clinical trial of an implanted responsive neurostimulation device. Selection was based on availability of cEEG and/or self-reports of disabling seizures. Exposures: Antiseizure medications and responsive neurostimulation, based on clinical indications. Main Outcomes and Measures: Measures involved (1) self-reported daily seizure counts, (2) cEEG-based hourly counts of electrographic seizures, and (3) detections of interictal epileptiform activity (IEA), which fluctuates in daily (circadian) and multiday (multidien) cycles. Outcomes involved descriptive characteristics of cycles of IEA and seizures: (1) prevalence, defined as the percentage of patients with a given type of seizure cycle; (2) strength, defined as the degree of consistency with which seizures occur at certain phases of an underlying cycle, measured as the phase-locking value (PLV); and (3) seizure chronotypes, defined as patterns in seizure timing evident at the group level. Results: Of the 222 participants, 112 (50%) were male, and the median age was 35 years (range, 18-66 years). The prevalence of circannual (approximately 1 year) seizure cycles was 12% (24 of 194), the prevalence of multidien (approximately weekly to approximately monthly) seizure cycles was 60% (112 of 186), and the prevalence of circadian (approximately 24 hours) seizure cycles was 89% (76 of 85). Strengths of circadian (mean [SD] PLV, 0.34 [0.18]) and multidien (mean [SD] PLV, 0.34 [0.17]) seizure cycles were comparable, whereas circannual seizure cycles were weaker (mean [SD] PLV, 0.17 [0.10]). Across individuals, circadian seizure cycles showed 5 peaks: morning, mid-afternoon, evening, early night, and late night. Multidien cycles of IEA showed peak periodicities centered around 7, 15, 20, and 30 days. Independent of multidien period length, self-reported and electrographic seizures consistently occurred during the days-long rising phase of multidien cycles of IEA. Conclusions and Relevance: Findings in this large cohort establish the high prevalence of plural seizure cycles and help explain the natural variability in seizure timing. The results have the potential to inform the scheduling of diagnostic studies, the delivery of time-varying therapies, and the design of clinical trials in epilepsy.


Subject(s)
Circadian Rhythm/physiology , Electrocorticography/methods , Epilepsies, Partial/physiopathology , Seizures/physiopathology , Adolescent , Adult , Aged , Cohort Studies , Epilepsies, Partial/diagnosis , Epilepsies, Partial/therapy , Female , Humans , Implantable Neurostimulators , Male , Middle Aged , Retrospective Studies , Seizures/diagnosis , Seizures/therapy , Young Adult
18.
Epilepsia ; 62(4): 947-959, 2021 04.
Article in English | MEDLINE | ID: mdl-33634855

ABSTRACT

OBJECTIVE: Intracranial electroencephalography (ICEEG) recordings are performed for seizure localization in medically refractory epilepsy. Signal quantifications such as frequency power can be projected as heatmaps on personalized three-dimensional (3D) reconstructed cortical surfaces to distill these complex recordings into intuitive cinematic visualizations. However, simultaneously reconciling deep recording locations and reliably tracking evolving ictal patterns remain significant challenges. METHODS: We fused oblique magnetic resonance imaging (MRI) slices along depth probe trajectories with cortical surface reconstructions and projected dynamic heatmaps using a simple mathematical metric of epileptiform activity (line-length). This omni-planar and surface casting of epileptiform activity approach (OPSCEA) thus illustrated seizure onset and spread among both deep and superficial locations simultaneously with minimal need for signal processing supervision. We utilized the approach on 41 patients at our center implanted with grid, strip, and/or depth electrodes for localizing medically refractory seizures. Peri-ictal data were converted into OPSCEA videos with multiple 3D brain views illustrating all electrode locations. Five people of varying expertise in epilepsy (medical student through epilepsy attending level) attempted to localize the seizure-onset zones. RESULTS: We retrospectively compared this approach with the original ICEEG study reports for validation. Accuracy ranged from 73.2% to 97.6% for complete or overlapping onset lobe(s), respectively, and ~56.1% to 95.1% for the specific focus (or foci). Higher answer certainty for a given case predicted better accuracy, and scorers had similar accuracy across different training levels. SIGNIFICANCE: In an era of increasing stereo-EEG use, cinematic visualizations fusing omni-planar and surface functional projections appear to provide a useful adjunct for interpreting complex intracranial recordings and subsequent surgery planning.


Subject(s)
Drug Resistant Epilepsy/diagnostic imaging , Drug Resistant Epilepsy/physiopathology , Electrocorticography/standards , Magnetic Resonance Imaging/standards , Seizures/diagnostic imaging , Seizures/physiopathology , Adolescent , Adult , Brain/diagnostic imaging , Brain/physiopathology , Child , Child, Preschool , Electrocorticography/methods , Female , Follow-Up Studies , Humans , Magnetic Resonance Imaging/methods , Male , Middle Aged , Retrospective Studies , Young Adult
19.
Seizure ; 85: 145-150, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33465639

ABSTRACT

PURPOSE: There are multidien patterns of seizure occurrence. Predicting seizure risk may be easier with biomarker correlates to multidien patterns. We hypothesize multiday hyper or hypoglycemia contributes to seizure risk. METHODS: In a type I diabetic (T1D) with focal onset epilepsy with continuous glucose monitoring (CGM) and responsive neurostimulation (RNS) devices, we studied multiday interictal activities (IEA), seizures, and glucose. Hourly CGM data was matched to hourly RNS captures of interictal and ictal activities over 33 months. RNS detection settings were unchanged. Multidien cycles were analyzed, active blocks of IEA and ictal episodes defined, and tissue glucose averages studied. RESULTS: Average glucose was 161 mg/dl. A 40-day cycle of interictal and ictal activities occurred, though no similar glucose cycle was evident. Glucose elevations relative to patient average were associated with increases in IEA but not seizure. Frequent seizures were not associated with obvious elevations or decreases of glucose from baseline, most seizures occurred at +/- 10 mg/dl of average daily glucose (i.e. 150-170 mg/dl). CONCLUSION: Tissue glucose may influence IEA but may not influence multiday seizure activity or very frequent seizures. In an ambulatory T1D patient multiday hypo or hyperglycemic extremes do not appear to provoke seizure activities.


Subject(s)
Blood Glucose Self-Monitoring , Blood Glucose , Electroencephalography , Glucose , Humans , Seizures
20.
Lancet Neurol ; 20(2): 127-135, 2021 02.
Article in English | MEDLINE | ID: mdl-33341149

ABSTRACT

BACKGROUND: People with epilepsy are burdened with the apparent unpredictability of seizures. In the past decade, converging evidence from studies using chronic EEG (cEEG) revealed that epileptic brain activity shows robust cycles, operating over hours (circadian) and days (multidien). We hypothesised that these cycles can be leveraged to estimate future seizure probability, and we tested the feasibility of forecasting seizures days in advance. METHODS: We did a feasibility study in distinct development and validation cohorts, involving retrospective analysis of cEEG data recorded with an implanted device in adults (age ≥18 years) with drug-resistant focal epilepsy followed at 35 centres across the USA between Jan 19, 2004, and May 18, 2018. Patients were required to have had 20 or more electrographic seizures (development cohort) or self-reported seizures (validation cohort). In all patients, the device recorded interictal epileptiform activity (IEA; ≥6 months of continuous hourly data), the fluctuations in which helped estimate varying seizure risk. Point process statistical models trained on initial portions of each patient's cEEG data (both cohorts) generated forecasts of seizure probability that were tested on subsequent unseen seizure data and evaluated against surrogate time-series. The primary outcome was the percentage of patients with forecasts showing improvement over chance (IoC). FINDINGS: We screened 72 and 256 patients, and included 18 and 157 patients in the development and validation cohorts, respectively. Models incorporating information about multidien IEA cycles alone generated daily seizure forecasts for the next calendar day with IoC in 15 (83%) patients in the development cohort and 103 (66%) patients in the validation cohort. The forecasting horizon could be extended up to 3 days while maintaining IoC in two (11%) of 18 patients and 61 (39%) of 157 patients. Forecasts with a shorter horizon of 1 h, possible only for electrographic seizures in the development cohort, showed IoC in all 18 (100%) patients. INTERPRETATION: This study shows that seizure probability can be forecasted days in advance by leveraging multidien IEA cycles recorded with an implanted device. This study will serve as a basis for prospective clinical trials to establish how people with epilepsy might benefit from seizure forecasting over long horizons. FUNDING: None. VIDEO ABSTRACT.


Subject(s)
Epilepsies, Partial/diagnosis , Seizures/diagnosis , Adult , Electroencephalography , Feasibility Studies , Female , Humans , Male , Middle Aged , Models, Statistical , Periodicity , Predictive Value of Tests , Probability , Reproducibility of Results , Retrospective Studies , Self Report , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...