Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 146(12): 8071-8085, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38492239

ABSTRACT

The FET protein family, comprising FUS, EWS, and TAF15, plays crucial roles in mRNA maturation, transcriptional regulation, and DNA damage response. Clinically, they are linked to Ewing family tumors and neurodegenerative diseases such as amyotrophic lateral sclerosis. The fusion protein EWS::FLI1, the causative mutation of Ewing sarcoma, arises from a genomic translocation that fuses a portion of the low-complexity domain (LCD) of EWS (EWSLCD) with the DNA binding domain of the ETS transcription factor FLI1. This fusion protein modifies transcriptional programs and disrupts native EWS functions, such as splicing. The exact role of the intrinsically disordered EWSLCD remains a topic of active investigation, but its ability to phase separate and form biomolecular condensates is believed to be central to EWS::FLI1's oncogenic properties. Here, we used paramagnetic relaxation enhancement NMR, microscopy, and all-atom molecular dynamics (MD) simulations to better understand the self-association and phase separation tendencies of the EWSLCD. Our NMR data and mutational analysis suggest that a higher density and proximity of tyrosine residues amplify the likelihood of condensate formation. MD simulations revealed that the tyrosine-rich termini exhibit compact conformations with unique contact networks and provided critical input on the relationship between contacts formed within a single molecule (intramolecular) and inside the condensed phase (intermolecular). These findings enhance our understanding of FET proteins' condensate-forming capabilities and underline differences between EWS, FUS, and TAF15.


Subject(s)
Sarcoma, Ewing , TATA-Binding Protein Associated Factors , Humans , RNA-Binding Protein EWS/metabolism , RNA-Binding Protein FUS/metabolism , Phase Separation , Sarcoma, Ewing/genetics , Sarcoma, Ewing/metabolism , Sarcoma, Ewing/pathology , Proteins/metabolism , Tyrosine , TATA-Binding Protein Associated Factors/genetics , TATA-Binding Protein Associated Factors/metabolism
2.
bioRxiv ; 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37961424

ABSTRACT

The FET family proteins, which includes FUS, EWS, and TAF15, are RNA chaperones instrumental in processes such as mRNA maturation, transcriptional regulation, and the DNA damage response. These proteins have clinical significance: chromosomal rearrangements in FET proteins are implicated in Ewing family tumors and related sarcomas. Furthermore, point mutations in FUS and TAF15 are associated with neurodegenerative conditions like amyotrophic lateral sclerosis and frontotemporal lobar dementia. The fusion protein EWS::FLI1, the causative mutation of Ewing sarcoma, arises from a genomic translocation that fuses the low-complexity domain (LCD) of EWS (EWSLCD) with the DNA binding domain of the ETS transcription factor FLI1. This fusion not only alters transcriptional programs but also hinders native EWS functions like splicing. However, the precise function of the intrinsically disordered EWSLCD is still a topic of active investigation. Due to its flexible nature, EWSLCD can form transient interactions with itself and other biomolecules, leading to the formation of biomolecular condensates through phase separation - a mechanism thought to be central to the oncogenicity of EWS::FLI1. In our study, we used paramagnetic relaxation enhancement NMR, analytical ultracentrifugation, light microscopy, and all-atom molecular dynamics (MD) simulations to better understand the self-association and phase separation tendencies of EWSLCD. Our aim was to elucidate the molecular events that underpin EWSLCD-mediated biomolecular condensation. Our NMR data suggest tyrosine residues primarily drive the interactions vital for EWSLCD phase separation. Moreover, a higher density and proximity of tyrosine residues amplify the likelihood of condensate formation. Atomistic MD simulations and hydrodynamic experiments revealed that the tyrosine-rich N and C-termini tend to populate compact conformations, establishing unique contact networks, that are connected by a predominantly extended, tyrosine-depleted, linker region. MD simulations provide critical input on the relationship between contacts formed within a single molecule (intramolecular) and inside the condensed phase (intermolecular), and changes in protein conformations upon condensation. These results offer deeper insights into the condensate-forming abilities of the FET proteins and highlights unique structural and functional nuances between EWS and its counterparts, FUS and TAF15.

3.
Elife ; 122023 06 02.
Article in English | MEDLINE | ID: mdl-37266578

ABSTRACT

In embryonal rhabdomyosarcoma (ERMS) and generally in sarcomas, the role of wild-type and loss- or gain-of-function TP53 mutations remains largely undefined. Eliminating mutant or restoring wild-type p53 is challenging; nevertheless, understanding p53 variant effects on tumorigenesis remains central to realizing better treatment outcomes. In ERMS, >70% of patients retain wild-type TP53, yet mutations when present are associated with worse prognosis. Employing a kRASG12D-driven ERMS tumor model and tp53 null (tp53-/-) zebrafish, we define wild-type and patient-specific TP53 mutant effects on tumorigenesis. We demonstrate that tp53 is a major suppressor of tumorigenesis, where tp53 loss expands tumor initiation from <35% to >97% of animals. Characterizing three patient-specific alleles reveals that TP53C176F partially retains wild-type p53 apoptotic activity that can be exploited, whereas TP53P153Δ and TP53Y220C encode two structurally related proteins with gain-of-function effects that predispose to head musculature ERMS. TP53P153Δ unexpectedly also predisposes to hedgehog-expressing medulloblastomas in the kRASG12D-driven ERMS-model.


Subject(s)
Cerebellar Neoplasms , Rhabdomyosarcoma, Embryonal , Animals , Carcinogenesis , Mutation , Proto-Oncogene Proteins p21(ras)/metabolism , Rhabdomyosarcoma, Embryonal/metabolism , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Zebrafish/genetics , Zebrafish/metabolism
4.
Biomolecules ; 13(4)2023 04 12.
Article in English | MEDLINE | ID: mdl-37189414

ABSTRACT

Intrinsically disordered proteins play important roles in cell signaling, and dysregulation of these proteins is associated with several diseases. Prostate apoptosis response-4 (Par-4), an approximately 40 kilodalton proapoptotic tumor suppressor, is a predominantly intrinsically disordered protein whose downregulation has been observed in various cancers. The caspase-cleaved fragment of Par-4 (cl-Par-4) is active and plays a role in tumor suppression by inhibiting cell survival pathways. Here, we employed site-directed mutagenesis to create a cl-Par-4 point mutant (D313K). The expressed and purified D313K protein was characterized using biophysical techniques, and the results were compared to that of the wild-type (WT). We have previously demonstrated that WT cl-Par-4 attains a stable, compact, and helical conformation in the presence of a high level of salt at physiological pH. Here, we show that the D313K protein attains a similar conformation as the WT in the presence of salt, but at an approximately two times lower salt concentration. This establishes that the substitution of a basic residue for an acidic residue at position 313 alleviates inter-helical charge repulsion between dimer partners and helps to stabilize the structural conformation.


Subject(s)
Intrinsically Disordered Proteins , Neoplasms , Male , Humans , Protein Conformation , Models, Molecular , Genes, Tumor Suppressor , Mutagenesis, Site-Directed , Intrinsically Disordered Proteins/chemistry , Circular Dichroism
5.
Structure ; 31(2): 121-122, 2023 02 02.
Article in English | MEDLINE | ID: mdl-36736295

ABSTRACT

In this issue of Structure, Wang et al. investigate the interplay between folded and disordered regions of the SARS-CoV-2 non-structural protein 1 (Nsp1) that promotes the suppression of host protein translation. Their investigation will lead to novel avenues to therapeutically target critical viral functions necessary for host immune-response suppression.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/metabolism , Viral Nonstructural Proteins/chemistry
6.
Front Mol Biosci ; 8: 744707, 2021.
Article in English | MEDLINE | ID: mdl-34631798

ABSTRACT

RNA binding proteins (RBPs) are essential for critical biological processes such as translation regulation and mRNA processing, and misfunctions of these proteins are associated with diseases such as cancer and neurodegeneration. SERBP1 (SERPINE1 mRNA Binding Protein 1) is an RBP that comprises two RG/RGG repeat regions yet lacks other recognizable RNA-binding motifs. It is involved in mRNA maturation, and translational regulation. It was initially identified as a hyaluronic acid binding protein, but recent studies have identified central roles for SERBP1 in brain function and development, especially neurogenesis and synaptogenesis. SERBP1 regulates One-carbon metabolism and epigenetic modification of histones, and increased SERBP1 expression in cancers such as leukemia, ovarian, prostate, liver and glioblastoma is correlated with poor patient outcomes. Despite these important regulatory roles for SERBP1, little is known about its structural and dynamic properties, nor about the molecular mechanisms governing its interaction with mRNA. Here, we define SERBP1 as an intrinsically disordered protein, containing highly conserved elements that were shown to be functionally important. The RNA binding activity of SERBP1 was explored using solution NMR and other biophysical techniques. The outcome of these experiments revealed that SERBP1 preferentially samples compact conformations including a central, stable α-helix and show that SERBP1 recognizes G-rich RNA sequences at the C-terminus involving the RGG box and neighboring residues. Despite the role in RNA recognition, the RGG boxes do not seem to stabilize the central helix and the central helix does not participate in RNA binding. Further, SERBP1 undergoes liquid-liquid phase separation, mediated by salt and RNA, and both RGG boxes are necessary for the efficient formation of condensed phases. Together, these results provide a foundation for understanding the molecular mechanisms of SERBP1 functions in physiological and pathological processes.

7.
Biomol NMR Assign ; 15(2): 461-466, 2021 10.
Article in English | MEDLINE | ID: mdl-34436734

ABSTRACT

SERBP1 is a multifunctional mRNA-binding protein that has been shown to play a regulatory role in a number of biological processes such as thrombosis, DNA damage repair, and the cellular response to nutrient deprivation. Additionally, SERBP1 is upregulated in glioblastoma, leukemia as well as liver, prostrate and ovarian cancers where it has been implicated in metastatic disease and poor patient outcomes. SERBP1 binds target mRNA, stabilizing and regulating the post-translational expression of the transcript. Since SERBP1 lacks canonical RNA-binding motifs such as RRM domains or zinc fingers, its target recognition and binding mechanisms are not well understood. Recent reports suggest that it is capable of recognizing both RNA sequence motifs and structured domains. Here we report the production and purification of the intrinsically disordered C-terminal domain of SERBP1, the assignment of the 1H, 13C, 15N backbone resonances of the protein by solution-state NMR, and secondary structure predictions. We show that the protein is not entirely disordered and identify an α-helix that was stable under the experimental conditions. This work is the first step toward understanding the structural basis underpinning the molecular mechanisms of SERBP1 functions, particularly interactions with mRNA targets.


Subject(s)
RNA-Binding Proteins
8.
Biomol NMR Assign ; 12(2): 309-314, 2018 10.
Article in English | MEDLINE | ID: mdl-29869749

ABSTRACT

Death receptors (DR) selectively drive cancer cells to apoptosis upon binding to the Tumor necrosis factor-a-Related Apoptosis-Inducing Ligand (TRAIL). Complex formation induces the oligomerization of the death receptors DR4 (TRAIL-R1) and DR5 (TRAIL-R2) and transduces the apoptogenic signal to their respective death domains, leading to Death Inducing Signaling Complex (DISC) formation, caspase activation and ultimately cell death. Several crystal structures of the ExtraCellular Domain from Death Receptor 5 (DR5-ECD) have been reported in complex with the TRAIL ligand or anti-DR5 antibodies, but none for the isolated protein. In order to fill this gap and to perform binding experiments with TRAIL peptidomimetics, we have produced isotopically labelled DR5-ECD and started a conformational analysis by using high-field 3D NMR spectroscopy. Herein, we present the first resonance assignment of a TRAIL receptor in solution and the determination of its secondary structure from NMR chemical shifts.


Subject(s)
Extracellular Space/metabolism , Nuclear Magnetic Resonance, Biomolecular , Receptors, TNF-Related Apoptosis-Inducing Ligand/chemistry , Amino Acid Sequence , Humans , Protein Domains , Protein Structure, Secondary
SELECTION OF CITATIONS
SEARCH DETAIL
...