Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 24(24)2023 Dec 13.
Article in English | MEDLINE | ID: mdl-38139264

ABSTRACT

Although several (chemotherapeutic) protocols to treat acute myeloid leukemia (AML) are available, high rates of relapses in successfully treated patients occur. Strategies to stabilize remissions are greatly needed. The combination of the (clinically approved) immune-modulatory compounds Granulocyte-Macrophage-Colony-Stimulating-Factor (GM-CSF) and Prostaglandine E1 (PGE-1) (Kit-M) converts myeloid blasts into dendritic cells of leukemic origin (DCleu). After stimulation with DCleu ex vivo, leukemia-specific antileukemic immune cells are activated. Therefore, Kit-M treatment may be an attractive immunotherapeutic tool to treat patients with myeloid leukemia. Kit-M-mediated antileukemic effects on whole bone marrow (WBM) were evaluated and compared to whole blood (WB) to evaluate the potential effects of Kit-M on both compartments. WB and WBM samples from 17 AML patients at first diagnosis, in persisting disease and at relapse after allogeneic stem cell transplantation (SCT) were treated in parallel with Kit-M to generate DC/DCleu. Untreated samples served as controls. After a mixed lymphocyte culture enriched with patients' T cells (MLC), the leukemia-specific antileukemic effects were assessed through the degranulation- (CD107a+ T cells), the intracellular IFNγ production- and the cytotoxicity fluorolysis assay. Quantification of cell subtypes was performed via flow cytometry. In both WB and WBM significantly higher frequencies of (mature) DCleu were generated without induction of blast proliferation in Kit-M-treated samples compared to control. After MLC with Kit-M-treated vs. not pretreated WB or WBM, frequencies of (leukemia-specific) immunoreactive cells (e.g., non-naive, effector-, memory-, CD3+ß7+ T cells, NK- cells) were (significantly) increased, whereas leukemia-specific regulatory T cells (Treg, CD152+ T cells) were (significantly) decreased. The cytotoxicity fluorolysis assay showed a significantly improved blast lysis in Kit-M-treated WB and WBM compared to control. A parallel comparison of WB and WBM samples revealed no significant differences in frequencies of DCleu, (leukemia-specific) immunoreactive cells and achieved antileukemic processes. Kit-M was shown to have comparable effects on WB and WBM samples regarding the generation of DCleu and activation of (antileukemic) immune cells after MLC. This was true for samples before or after SCT. In summary, a potential Kit-M in vivo treatment could lead to antileukemic effects in WB as well as WBM in vivo and to stabilization of the disease or remission in patients before or after SCT. A clinical trial is currently being planned.


Subject(s)
Alprostadil , Leukemia, Myeloid, Acute , Humans , Alprostadil/pharmacology , Granulocyte-Macrophage Colony-Stimulating Factor/pharmacology , Dendritic Cells , Bone Marrow , Lymphocyte Activation , T-Lymphocytes, Regulatory , Granulocytes , Macrophages
2.
Biomolecules ; 13(6)2023 06 14.
Article in English | MEDLINE | ID: mdl-37371569

ABSTRACT

Volatile organic compounds (VOCs) reflect the metabolism in healthy and pathological conditions, and can be collected easily in a noninvasive manner. They are directly measured using electronical nose (eNose), and may qualify as a systemic tool to monitor biomarkers related to disease. Myeloid leukemic blasts can be transformed into leukemia-derived dendritic cells (DCleu) able to improve (anti-leukemic) immune responses. To profile immunological changes in healthy and acute myeloid leukemic (AML) patients' ex vivo cell cultures, we correlated the cell biological data with the profiles of cell culture supernatant-derived VOCs. DC/DCleu from leukemic or healthy whole blood (WB) were generated without (Control) or with immunomodulatory Kit M (Granulocyte macrophage-colony-stimulating-factor (GM-CSF) + prostaglandin E1 (PGE1)) in dendritic cell cultures (DC culture). Kit-pretreated/not pretreated WB was used to stimulate T cell-enriched immunoreactive cells in mixed lymphocyte cultures (MLC culture). Leukemia-specific adaptive and innate immune cells were detected with a degranulation assay (Deg) and an intracellular cytokine assay (InCyt). Anti-leukemic cytotoxicity was explored with a cytotoxicity fluorolysis assay (CTX). VOCs collected from serum or DC- and MLC culture supernatants (with vs. without Kit M pretreatment and before vs. after culture) were measured using eNose. Compared to the Control (without treatment), Kit M-pretreated leukemic and healthy WB gave rise to higher frequencies of mature (leukemia-derived) DC subtypes of activated and (memory) T cells after MLC. Moreover, antigen (leukemia)-specific cells of several lines (innate and adaptive immunity cells) were induced, giving rise to blast-lysing cells. The eNose could significantly distinguish between healthy and leukemic patients' serum, DC and MLC culture supernatant-derived volatile phases and could significantly separate several supernatant (with vs. without Kit M treatment, cultured vs. uncultured)-derived VOCs within subgroups (healthy DC or leukemic DC, or healthy MLC or leukemic MLC supernatants). Interestingly, the eNose could indicate a Kit M- and culture-associated effect. The eNose may be a prospective option for the deduction of a VOC-based profiling strategy using serum or cell culture supernatants and could be a useful diagnostic tool to recognize or qualify AML disease.


Subject(s)
Leukemia, Myeloid, Acute , Volatile Organic Compounds , Humans , Dendritic Cells , Volatile Organic Compounds/metabolism , Leukemia, Myeloid, Acute/metabolism , Prospective Studies , Lymphocyte Activation
SELECTION OF CITATIONS
SEARCH DETAIL
...