Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Pediatr Gastroenterol Nutr ; 78(5): 1047-1058, 2024 May.
Article in English | MEDLINE | ID: mdl-38529852

ABSTRACT

OBJECTIVES: Parenteral nutrition (PN) is used for patients of varying ages with intestinal failure to supplement calories. Premature newborns with low birth weight are at a high risk for developing PN associated liver disease (PNALD) including steatosis, cholestasis, and gallbladder sludge/stones. To optimize nutrition regimens, models are required to predict PNALD. METHODS: We have exploited induced pluripotent stem cell derived liver organoids to provide a testing platform for PNALD. Liver organoids mimic the developing liver and contain the different hepatic cell types. The organoids have an early postnatal maturity making them a suitable model for premature newborns. To mimic PN treatment we used medium supplemented with either clinoleic (80% olive oil/20% soybean oil) or intralipid (100% soybean oil) for 7 days. RESULTS: Homogenous HNF4a staining was found in all organoids and PN treatments caused accumulation of lipids in hepatocytes. Organoids exhibited a dose dependent decrease in CYP3A4 activity and expression of hepatocyte functional genes. The lipid emulsions did not affect overall organoid viability and glucose levels had no contributory effect to the observed results. CONCLUSIONS: Liver organoids could be utilized as a potential screening platform for the development of new, less hepatotoxic PN solutions. Both lipid treatments caused hepatic lipid accumulation, a significant decrease in CYP3A4 activity and a decrease in the RNA levels of both CYP3A4 and CYP1A2 in a dose dependent manner. The presence of high glucose had no additive effect, while Clinoleic at high dose, caused significant upregulation of interleukin 6 and TLR4 expression.


Subject(s)
Cytochrome P-450 CYP3A , Induced Pluripotent Stem Cells , Liver , Organoids , Parenteral Nutrition , Soybean Oil , Organoids/drug effects , Organoids/metabolism , Cytochrome P-450 CYP3A/metabolism , Humans , Induced Pluripotent Stem Cells/drug effects , Induced Pluripotent Stem Cells/metabolism , Liver/drug effects , Liver/cytology , Soybean Oil/pharmacology , Phospholipids/pharmacology , Phospholipids/metabolism , Emulsions , Fat Emulsions, Intravenous/pharmacology , Hepatocytes/drug effects , Hepatocytes/metabolism , Olive Oil/pharmacology , Infant, Newborn , Hepatocyte Nuclear Factor 4/metabolism , Hepatocyte Nuclear Factor 4/genetics
2.
Exp Mol Med ; 55(9): 2005-2024, 2023 09.
Article in English | MEDLINE | ID: mdl-37653039

ABSTRACT

The lack of physiological parity between 2D cell culture and in vivo culture has led to the development of more organotypic models, such as organoids. Organoid models have been developed for a number of tissues, including the liver. Current organoid protocols are characterized by a reliance on extracellular matrices (ECMs), patterning in 2D culture, costly growth factors and a lack of cellular diversity, structure, and organization. Current hepatic organoid models are generally simplistic and composed of hepatocytes or cholangiocytes, rendering them less physiologically relevant compared to native tissue. We have developed an approach that does not require 2D patterning, is ECM independent, and employs small molecules to mimic embryonic liver development that produces large quantities of liver-like organoids. Using single-cell RNA sequencing and immunofluorescence, we demonstrate a liver-like cellular repertoire, a higher order cellular complexity, presenting with vascular luminal structures, and a population of resident macrophages: Kupffer cells. The organoids exhibit key liver functions, including drug metabolism, serum protein production, urea synthesis and coagulation factor production, with preserved post-translational modifications such as N-glycosylation and functionality. The organoids can be transplanted and maintained long term in mice producing human albumin. The organoids exhibit a complex cellular repertoire reflective of the organ and have de novo vascularization and liver-like function. These characteristics are a prerequisite for many applications from cellular therapy, tissue engineering, drug toxicity assessment, and disease modeling to basic developmental biology.


Subject(s)
Liver , Organoids , Humans , Animals , Mice , Tissue Engineering , Hepatocytes , Cells, Cultured
3.
Autophagy ; 18(8): 1915-1931, 2022 08.
Article in English | MEDLINE | ID: mdl-34923909

ABSTRACT

Early events during development leading to exit from a pluripotent state and commitment toward a specific germ layer still need in-depth understanding. Autophagy has been shown to play a crucial role in both development and differentiation. This study employs human embryonic and induced pluripotent stem cells to understand the early events of lineage commitment with respect to the role of autophagy in this process. Our data indicate that a dip in autophagy facilitates exit from pluripotency. Upon exit, we demonstrate that the modulation of autophagy affects SOX2 levels and lineage commitment, with induction of autophagy promoting SOX2 degradation and mesendoderm formation, whereas inhibition of autophagy causes SOX2 accumulation and neuroectoderm formation. Thus, our results indicate that autophagy-mediated SOX2 turnover is a determining factor for lineage commitment. These findings will deepen our understanding of development and lead to improved methods to derive different lineages and cell types.Abbreviations: ACTB: Actin, beta; ATG: Autophagy-related; BafA1: Bafilomycin A1; CAS9: CRISPR-associated protein 9; CQ: Chloroquine; DE: Definitive endoderm; hESCs: Human Embryonic Stem Cells; hiPSCs: Human Induced Pluripotent Stem Cells; LAMP1: Lysosomal Associated Membrane Protein 1; MAP1LC3: Microtubule-Associated Protein 1 Light Chain 3; MTOR: Mechanistic Target Of Rapamycin Kinase; NANOG: Nanog Homeobox; PAX6: Paired Box 6; PE: Phosphatidylethanolamine; POU5F1: POU class 5 Homeobox 1; PRKAA2: Protein Kinase AMP-Activated Catalytic Subunit Alpha 2; SOX2: SRY-box Transcription Factor 2; SQSTM1: Sequestosome 1; ULK1: unc-51 like Autophagy Activating Kinase 1; WDFY3: WD Repeat and FYVE Domain Containing 3.


Subject(s)
Autophagy , Induced Pluripotent Stem Cells , Autophagy/physiology , Cell Differentiation , HeLa Cells , Humans
4.
Front Med (Lausanne) ; 8: 574047, 2021.
Article in English | MEDLINE | ID: mdl-34026769

ABSTRACT

Liver cell types derived from induced pluripotent stem cells (iPSCs) share the potential to investigate development, toxicity, as well as genetic and infectious disease in ways currently limited by the availability of primary tissue. With the added advantage of patient specificity, which can play a role in all of these areas. Many iPSC differentiation protocols focus on 3 dimensional (3D) or organotypic differentiation, as these offer the advantage of more closely mimicking in vivo systems including; the formation of tissue like architecture and interactions/crosstalk between different cell types. Ultimately such models have the potential to be used clinically and either with or more aptly, in place of animal models. Along with the development of organotypic and micro-tissue models, there will be a need to co-develop imaging technologies to enable their visualization. A variety of liver models termed "organoids" have been reported in the literature ranging from simple spheres or cysts of a single cell type, usually hepatocytes, to those containing multiple cell types combined during the differentiation process such as hepatic stellate cells, endothelial cells, and mesenchymal cells, often leading to an improved hepatic phenotype. These allow specific functions or readouts to be examined such as drug metabolism, protein secretion or an improved phenotype, but because of their relative simplicity they lack the flexibility and general applicability of ex vivo tissue culture. In the liver field these are more often constructed rather than developed together organotypically as seen in other organoid models such as brain, kidney, lung and intestine. Having access to organotypic liver like surrogates containing multiple cell types with in vivo like interactions/architecture, would provide vastly improved models for disease, toxicity and drug development, combining disciplines such as microfluidic chip technology with organoids and ultimately paving the way to new therapies.

5.
Cells ; 10(2)2021 01 22.
Article in English | MEDLINE | ID: mdl-33498986

ABSTRACT

We explore the status of quiescence, stemness and adipogenic differentiation capacity in adipose stem/progenitor cells (ASCs) ex vivo, immediately after isolation from human subcutaneous white adipose tissue, by sorting the stromal vascular fraction into cell-surface DLK1+/CD34-, DLK1+/CD34dim and DLK1-/CD34+ cells. We demonstrate that DLK1-/CD34+ cells, the only population exhibiting proliferative and adipogenic capacity, express ex vivo the bonafide quiescence markers p21Cip1, p27Kip1 and p57Kip2 but neither proliferation markers nor the senescence marker p16Ink4a. The pluripotency markers NANOG, SOX2 and OCT4 are barely detectable in ex vivo ASCs while the somatic stemness factors, c-MYC and KLF4 and the early adipogenic factor C/EBPß are highly expressed. Further sorting of ASCs into DLK1-/CD34+/CD24- and DLK1-/CD34+/CD24+ fractions shows that KLF4 and c-MYC are higher expressed in DLK1-/CD34+/CD24+ cells correlating with higher colony formation capacity and considerably lower adipogenic activity. Proliferation capacity is similar in both populations. Next, we show that ASCs routinely isolated by plastic-adherence are DLK1-/CD34+/CD24+. Intriguingly, CD24 knock-down in these cells reduces proliferation and adipogenesis. In conclusion, DLK1-/CD34+ ASCs in human sWAT exist in a quiescent state, express high levels of somatic stemness factors and the early adipogenic transcription factor C/EBPß but senescence and pluripotency markers are barely detectable. Moreover, our data indicate that CD24 is necessary for adequate ASC proliferation and adipogenesis and that stemness is higher and adipogenic capacity lower in DLK1-/CD34+/CD24+ relative to DLK1-/CD34+/CD24- subpopulations.


Subject(s)
Adipogenesis , Adipose Tissue, White/cytology , Antigens, CD34/metabolism , CD24 Antigen/metabolism , Calcium-Binding Proteins/metabolism , Cell Cycle , Membrane Proteins/metabolism , Stem Cells/cytology , Adipogenesis/genetics , Biomarkers/metabolism , CCAAT-Enhancer-Binding Protein-beta/metabolism , Cell Cycle/genetics , Cell Proliferation , Cells, Cultured , Female , Gene Expression Regulation , Humans , Kruppel-Like Factor 4 , Kruppel-Like Transcription Factors/metabolism , Male , Proto-Oncogene Proteins c-myc/metabolism , RNA, Small Interfering/metabolism , Stem Cells/metabolism , Stromal Cells/metabolism , Subcutaneous Fat/cytology
6.
Adipocyte ; 9(1): 626-635, 2020 12.
Article in English | MEDLINE | ID: mdl-33070670

ABSTRACT

The CRISPR/Cas9 system is a powerful tool to generate a specific loss-of-function phenotype by gene knockout (KO). However, this approach is challenging in primary human cells. In this technical report, we present a reliable protocol to achieve a functional KO in the genome of human adipose stem/progenitor cells (ASCs). Using Sprouty1 (SPRY1) as a model target gene for a CRISPR/Cas9 mediated KO, we particularize the procedure including the selection of the CRISPR/Cas9 target sequences and the employment of appropriate lentiviral vectors to obtain a functional gene KO. The efficiency of CRISPR/Cas9 to mutate the SPRY1 gene is determined by a PCR-based mutation detection assay and sequence analysis. Effects on mRNA and protein levels are studied by RT-qPCR and Western blotting. In addition, we demonstrate that CRISPR/Cas9 mediated SPRY1 KO and gene silencing by shRNA are similarly effective to deplete the Sprouty1 protein and to inhibit adipogenic differentiation. In summary, we show a reliable approach to achieve a gene KO in human ASCs, which could also apply to other primary cell types. Abbreviations: ASC: Adipogenic Stem/Progenitor Cell; Cas: CRISPR-associated system; CRISPR: Clustered Regularly Interspaced Palindromic Repeat; gDNA: Genomic DNA; GOI: Gene of interest; gRNA: Guide RNA; NHEJ: Non-homologous end joining; Indel: Insertion/Deletion; PAM: Protospacer adjacent motif; sWAT: Subcutaneous white adipose tissue; TIDE: Tracking of indels by decomposition.


Subject(s)
Adipose Tissue/cytology , CRISPR-Cas Systems , Gene Editing , Gene Knockout Techniques , Stem Cells/metabolism , Biomarkers , Cell Differentiation/genetics , Cell Line , Genes, Reporter , Genetic Vectors/genetics , Humans , Mutation , RNA, Small Interfering/genetics
7.
J Gerontol A Biol Sci Med Sci ; 75(12): 2308-2319, 2020 11 13.
Article in English | MEDLINE | ID: mdl-32304210

ABSTRACT

The role of Ras-Mitogen-activated protein kinase (MAPK) signaling in cellular aging is not precisely understood. Recently, we identified Sprouty1 (SPRY1) as a weight-loss target gene in human adipose stem/progenitor cells (ASCs) and showed that Sprouty1 is important for proper regulation of adipogenesis. In the present study, we show that loss-of-function of Sprouty1 by CRISPR/Cas9-mediated genome editing in human ASCs leads to hyper-activation of MAPK signaling and a senescence phenotype. Sprouty1 knockout ASCs undergo an irreversible cell cycle arrest, become enlarged and stain positive for senescence-associated ß-galactosidase. Sprouty1 down-regulation leads to DNA double strand breaks, a considerably increased number of senescence-associated heterochromatin foci and induction of p53 and p21Cip1. In addition, we detect an increase of hypo-phosphorylated Retinoblastoma (Rb) protein in SPRY1 knockout ASCs. p16Ink4A is not induced. Moreover, we show that Sprouty1 knockout leads to induction of a senescence-associated secretory phenotype as indicated by the activation of the transcription factors NFκB and C/EBPß and a significant increase in mRNA expression and secretion of interleukin-8 (IL-8) and CXCL1/GROα. Finally, we demonstrate that adipogenesis is abrogated in senescent SPRY1 knockout ASCs. In conclusion, this study reveals a novel mechanism showing the importance of Sprouty1 for the prevention of senescence and the maintenance of the proliferation and differentiation capacity of human ASCs.


Subject(s)
Adipose Tissue/cytology , Cellular Senescence/genetics , Membrane Proteins/genetics , Phosphoproteins/genetics , Stem Cells/cytology , Adipogenesis/genetics , Cell Differentiation/genetics , Cell Proliferation/genetics , Cells, Cultured , Cyclin-Dependent Kinase Inhibitor p16/metabolism , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Humans , Loss of Function Mutation , Phenotype , Signal Transduction , beta-Galactosidase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...