Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
1.
Front Vet Sci ; 11: 1378826, 2024.
Article in English | MEDLINE | ID: mdl-38863454

ABSTRACT

Gastrointestinal lymphoma is the most common form of lymphoma in domestic cats. Aggressive phenotypes are much less common but do bear and unfavorable prognosis. Immunophenotyping by flow cytometry (FCM) is not systematically performed in these patients, because of difficulties in the acquisition of suitable sample material from the gastrointestinal tract. A multimodal diagnostic approach is recommended to improve identification of subtypes targeting patient tailored therapeutic strategies. The aim of this prospective study was to present results of multicolor FCM immunophenotyping in surgically removed gastrointestinal mass and relate them with histopathology using the World Health Organization (WHO) classification and clonality PCR testing. Thirty-two patients were included. Eight cats (25%) had gastric, 23 (72%) had intestinal lymphoma and 1 (3%) had gastric/jejunal lymphoma. Intestinal lymphoma sites were represented by 18 small intestinal, 4 ileocaecal, 1 large intestinal. All gastric lymphomas were diffuse large B-cell lymphoma (DLBCL). Small intestinal lymphomas were 10 enteropathy associated T-cell lymphoma type I (EATL I), 2 enteropathy associated T-cell lymphoma type II (EATL II), 2 peripheral T-cell lymphoma (PTCL), 3 DLBCL and one DLBCL+EATL II. The most common small intestinal FCM T-cell phenotype was CD3+CD21- CD4-CD8-CD18+ CD5-CD79- in 7/10 EATL I and one EATL II. The most frequent FCM B-cell phenotype was CD3-CD21+ CD4-CD8-CD18+ CD5-CD79+ in 13/17 DLBCL and the DLBCL+EATL II. Clonality PCR results were positive in 87.5% (28/32) of all cases. No cross-lineage rearrangement was observed. IHC and FCM results agreed in 87.5% (28/32) of all cases. When all 3 methods were combined, consistent results were seen in 75% (24/32). This is the first demonstration of a multicolor FCM approach set in context to the gold standard histopathology and clonality testing results.

2.
J Orthop Traumatol ; 25(1): 30, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38850466

ABSTRACT

BACKGROUND: Rotator cuff disorders, whether symptomatic or asymptomatic, may result in abnormal shoulder kinematics (scapular rotation and glenohumeral translation). This study aimed to investigate the effect of rotator cuff tears on in vivo shoulder kinematics during a 30° loaded abduction test using single-plane fluoroscopy. MATERIALS AND METHODS: In total, 25 younger controls, 25 older controls and 25 patients with unilateral symptomatic rotator cuff tears participated in this study. Both shoulders of each participant were analysed and grouped on the basis of magnetic resonance imaging into healthy, rotator cuff tendinopathy, asymptomatic and symptomatic rotator cuff tears. All participants performed a bilateral 30° arm abduction and adduction movement in the scapular plane with handheld weights (0, 2 and 4 kg) during fluoroscopy acquisition. The range of upward-downward scapular rotation and superior-inferior glenohumeral translation were measured and analysed during abduction and adduction using a linear mixed model (loads, shoulder types) with random effects (shoulder ID). RESULTS: Scapular rotation was greater in shoulders with rotator cuff tendinopathy and asymptomatic rotator cuff tears than in healthy shoulders. Additional load increased upward during abduction and downward during adduction scapular rotation (P < 0.001 in all groups but rotator cuff tendinopathy). In healthy shoulders, upward scapular rotation during 30° abduction increased from 2.3° with 0-kg load to 4.1° with 4-kg load and on shoulders with symptomatic rotator cuff tears from 3.6° with 0-kg load to 6.5° with 4-kg load. Glenohumeral translation was influenced by the handheld weights only in shoulders with rotator cuff tendinopathy (P ≤ 0.020). Overall, superior glenohumeral translation during 30° abduction was approximately 1.0 mm with all loads. CONCLUSIONS: The results of glenohumeral translation comparable to control but greater scapular rotations during 30° abduction in the scapular plane in rotator cuff tears indicate that the scapula compensates for rotator cuff deficiency by rotating. Further analysis of load-dependent joint stability is needed to better understand glenohumeral and scapula motion. LEVEL OF EVIDENCE: Level 2. TRIAL REGISTRATION: Ethical approval was obtained from the regional ethics committee (Ethics Committee Northwest Switzerland EKNZ 2021-00182), and the study was registered at clinicaltrials.gov on 29 March 2021 (trial registration number NCT04819724, https://clinicaltrials.gov/ct2/show/NCT04819724 ).


Subject(s)
Rotator Cuff Injuries , Adult , Aged , Female , Humans , Male , Middle Aged , Biomechanical Phenomena , Case-Control Studies , Fluoroscopy , Magnetic Resonance Imaging , Range of Motion, Articular/physiology , Rotation , Rotator Cuff Injuries/physiopathology , Rotator Cuff Injuries/diagnostic imaging , Shoulder Joint/physiopathology , Shoulder Joint/diagnostic imaging , Weight-Bearing/physiology
3.
J Biomech ; 166: 112055, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38522362

ABSTRACT

Glenohumeral biomechanics after rotator cuff (RC) tears have not been fully elucidated. This study aimed to investigate the muscle compensatory mechanism in weight-bearing shoulders with RC tears and asses the induced pathomechanics (i.e., glenohumeral translation, joint instability, center of force (CoF), joint reaction force). An experimental, glenohumeral simulator with muscle-mimicking cable system was used to simulate 30° scaption motion. Eight fresh-frozen shoulders were prepared and mounted in the simulator. Specimen-specific scapular anthropometry was used to test six RC tear types, with intact RC serving as the control, and three weight-bearing loads, with the non-weight-bearing condition serving as the control. Glenohumeral translation was calculated using instantaneous helical axis. CoF, muscle forces, and joint reaction forces were measured using force sensors integrated into the simulator. Linear mixed effects models (RC tear type and weight-bearing) with random effects (specimen and sex) were used to assess differences in glenohumeral biomechanics. RC tears did not change the glenohumeral translation (p > 0.05) but shifted the CoF superiorly (p ≤ 0.005). Glenohumeral translation and joint reaction forces increased with increasing weight bearing (p < 0.001). RC and deltoid muscle forces increased with the presence of RC tears (p ≤ 0.046) and increased weight bearing (p ≤ 0.042). The synergistic muscles compensated for the torn RC tendons, and the glenohumeral translation remained comparable to that for the intact RC tendons. However, in RC tears, the more superior CoF was close to where glenoid erosion occurs in RC tear patients with secondary osteoarthritis. These findings underscore the importance of early detection and precise management of RC tears.


Subject(s)
Rotator Cuff Injuries , Shoulder Joint , Humans , Shoulder/physiology , Rotator Cuff/physiology , Shoulder Joint/physiology , Biomechanical Phenomena , Weight-Bearing , Cadaver , Range of Motion, Articular/physiology
4.
Eur Radiol ; 34(1): 270-278, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37566272

ABSTRACT

OBJECTIVE: Patients with rotator cuff tears present often with glenohumeral joint instability. Assessing anatomic angles and shoulder kinematics from fluoroscopy requires labelling of specific landmarks in each image. This study aimed to develop an artificial intelligence model for automatic landmark detection from fluoroscopic images for motion tracking of the scapula and humeral head. MATERIALS AND METHODS: Fluoroscopic images were acquired for both shoulders of 25 participants (N = 12 patients with unilateral rotator cuff tear, 6 men, mean (standard deviation) age: 63.7 ± 9.7 years; 13 asymptomatic subjects, 7 men, 58.2 ± 8.9 years) during a 30° arm abduction and adduction movement in the scapular plane with and without handheld weights of 2 and 4 kg. A 3D full-resolution convolutional neural network (nnU-Net) was trained to automatically locate five landmarks (glenohumeral joint centre, humeral shaft, inferior and superior edges of the glenoid and most lateral point of the acromion) and a calibration sphere. RESULTS: The nnU-Net was trained with ground-truth data from 6021 fluoroscopic images of 40 shoulders and tested with 1925 fluoroscopic images of 10 shoulders. The automatic landmark detection algorithm achieved an accuracy above inter-rater variability and slightly below intra-rater variability. All landmarks and the calibration sphere were located within 1.5 mm, except the humeral landmark within 9.6 mm, but differences in abduction angles were within 1°. CONCLUSION: The proposed algorithm detects the desired landmarks on fluoroscopic images with sufficient accuracy and can therefore be applied to automatically assess shoulder motion, scapular rotation or glenohumeral translation in the scapular plane. CLINICAL RELEVANCE STATEMENT: This nnU-net algorithm facilitates efficient and objective identification and tracking of anatomical landmarks on fluoroscopic images necessary for measuring clinically relevant anatomical configuration (e.g. critical shoulder angle) and enables investigation of dynamic glenohumeral joint stability in pathological shoulders. KEY POINTS: • Anatomical configuration and glenohumeral joint stability are often a concern after rotator cuff tears. • Artificial intelligence applied to fluoroscopic images helps to identify and track anatomical landmarks during dynamic movements. • The developed automatic landmark detection algorithm optimised the labelling procedures and is suitable for clinical application.


Subject(s)
Rotator Cuff Injuries , Shoulder Joint , Male , Humans , Middle Aged , Aged , Rotator Cuff , Artificial Intelligence , Range of Motion, Articular , Fluoroscopy , Algorithms , Shoulder Joint/diagnostic imaging , Biomechanical Phenomena
5.
J Orthop Traumatol ; 24(1): 41, 2023 Aug 04.
Article in English | MEDLINE | ID: mdl-37542140

ABSTRACT

BACKGROUND: Rotator cuff muscles stabilise the glenohumeral joint and contribute to the initial abduction phase with other shoulder muscles. This study aimed to determine if the load-induced increase in shoulder muscle activity during a 30° abduction test is influenced by asymptomatic or symptomatic rotator cuff pathologies. MATERIALS AND METHODS: Twenty-five patients with unilateral rotator cuff tears (age, 64.3 ± 10.2 years), 25 older control subjects (55.4 ± 8.2 years) and 25 younger control subjects (26.1 ± 2.3 years) participated in this study. Participants performed a bilateral 30° arm abduction and adduction movement in the scapular plane with handheld weights (0-4 kg). Activity of the deltoid, infraspinatus, biceps brachii, pectoralis major, latissimus dorsi and upper trapezius muscles was analysed at maximum abduction angle after normalisation to maximum voluntary contraction. Shoulders were classified into rotator cuff tendinopathy, asymptomatic and symptomatic rotator cuff tears, and healthy based on magnetic resonance images. A linear mixed model (loads, shoulder types) with random effects (shoulder identification) was applied to the log-transformed muscle activities. RESULTS: Muscle activity increased with increasing load in all muscles and shoulder types (P < 0.001), and 1-kg increments in additional weights were significant (P < 0.001). Significant effects of rotator cuff pathologies were found for all muscles analysed (P < 0.05). In all muscles, activity was at least 20% higher in symptomatic rotator cuff tears than in healthy shoulders (P < 0.001). Symptomatic rotator cuff tears showed 20-32% higher posterior deltoid (P < 0.05) and 19-25% higher pectoralis major (P < 0.01) activity when compared with asymptomatic tears. CONCLUSIONS: Rotator cuff pathologies are associated with greater relative activity of shoulder muscles, even with low levels of additional load. Therefore, the inclusion of loaded shoulder tests in the diagnosis and rehabilitation of rotator cuff pathologies can provide important insight into the functional status of shoulders and can be used to guide treatment decisions. LEVEL OF EVIDENCE: Level 2. TRIAL REGISTRATION: Ethical approval was obtained from the regional ethics committee (Ethics Committee Northwest Switzerland EKNZ 2021-00182), and the study was registered at clinicaltrials.gov on 29 March 2021 (trial registration number NCT04819724, https://clinicaltrials.gov/ct2/show/NCT04819724 ).


Subject(s)
Rotator Cuff Injuries , Shoulder Joint , Aged , Humans , Middle Aged , Range of Motion, Articular/physiology , Rotator Cuff , Rotator Cuff Injuries/diagnosis , Shoulder/physiology , Case-Control Studies
6.
PLoS One ; 18(7): e0289115, 2023.
Article in English | MEDLINE | ID: mdl-37498910

ABSTRACT

Reaching movements are often used to assess selective trunk control in people with neurological conditions. Also, it is known that reaching performance after stroke is increased through training on a mobile seat compared to conventional physical therapy. However, the effect of a mobile seat on joint kinematics has not yet been investigated. This study aimed to quantify differences in the range of motion of the hip and trunk during reaching exercises on a mobile and stable sitting surface. Fifteen healthy participants performed reaching beyond arm's length on a mobile and a stable seat in four different directions: ipsilateral, anterior, contralateral, and contralateral diagonal. Biomechanical data were collected, including kinematics of the hip and trunk, and surface electromyography of the trunk muscles. The mobile sitting surface led to a higher range of motion in the trunk and the hip in the frontal and sagittal plane, but not in the rotational plane. Differences between reaching directions were found in all joint directions, except that of trunk flexion. Hence, movement patterns of the hip and trunk differ during reaching on different sitting surfaces and in different directions. A larger range of motion in the frontal or sagittal plane while training on the mobile seat provides added neuromuscular stimuli to the trunk muscles (= a higher demand on trunk muscles), which could result in more efficient training and therefore, increased trunk control after stroke. However, this has to be investigated in a future study with people after stroke.


Subject(s)
Movement , Stroke , Humans , Biomechanical Phenomena/physiology , Movement/physiology , Torso , Muscle, Skeletal/physiology , Range of Motion, Articular/physiology
7.
Med Eng Phys ; 117: 104003, 2023 07.
Article in English | MEDLINE | ID: mdl-37331756

ABSTRACT

BACKGROUND: Biomechanical studies of the shoulder often choose an ex vivo approach, especially when investigating the active and passive contribution of individual muscles. Although various simulators of the glenohumeral joint and its muscles have been developed, to date a testing standard has not been established. The objective of this scoping review was to present an overview of methodological and experimental studies describing ex vivo simulators that assess unconstrained, muscular driven shoulder biomechanics. METHODS: All studies with ex vivo or mechanical simulation experiments using an unconstrained glenohumeral joint simulator and active components mimicking the muscles were included in this scoping review. Static experiments and humeral motion imposed through an external guide, e.g., a robotic device, were excluded. RESULTS: Nine different glenohumeral simulators were identified in 51 studies after the screening process. We identified four control strategies characterized by: (a) using a primary loader to determine the secondary loaders with constant force ratios; (b) using variable muscle force ratios according to electromyography; (c) calibrating the muscle path profile and control each motor according to this profile; or (d) using muscle optimization. CONCLUSION: The simulators with the control strategy (b) (n = 1) or (d) (n = 2) appear most promising due to its capability to mimic physiological muscle loads.


Subject(s)
Shoulder Joint , Shoulder , Biomechanical Phenomena , Shoulder Joint/physiology , Mechanical Phenomena , Muscles/physiology , Range of Motion, Articular
8.
J Shoulder Elbow Surg ; 32(10): 2008-2016, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37178965

ABSTRACT

BACKGROUND: The Constant score (CS) is often used clinically to assess shoulder function and includes a muscle strength assessment only for abduction. The aim of this study was to evaluate the test-retest reliability of isometric shoulder muscle strength during various positions of abduction and rotation with the Biodex dynamometer and to determine their correlation with the strength assessment of the CS. METHODS: Ten young healthy subjects participated in this study. Isometric shoulder muscle strength was measured during 3 repetitions for abduction at 10° and 30° abduction in the scapular plane (with extended elbow and hand in neutral position) and for internal and external rotation (with the arm at 15° abduction in the scapular plane and elbow flexed at 90°). Muscle strength tests with the Biodex dynamometer were measured in 2 different sessions. The CS was acquired only in the first session. Intraclass correlation coefficients (ICCs) with 95% confidence interval, limits of agreement, and paired t tests for repeated tests of each abduction and rotation task were calculated. Pearson's correlation between the strength parameter of the CS and isometric muscle strength was investigated. RESULTS: Muscle strength did not differ between tests (P > .05) with good to very good reliabilities for abduction at 10° and 30°, external rotation and internal rotation (ICC >0.7 for all). A moderate correlation of the strength parameter of the CS with all isometric shoulder strength parameters was observed (r > 0.5 for all). CONCLUSION: Shoulder muscle strength for abduction and rotation measured with the Biodex dynamometer are reproducible and correlate with the strength assessment of the CS. Therefore, these isometric muscle strength tests can be further employed to investigate the effect of different shoulder joint pathology on muscle strength. These measurements consider a more comprehensive functionality of the rotator cuff than the single strength evaluation in abduction within the CS as both abduction and rotation are assessed. Potentially, this would allow for a more precise differentiation between the various outcomes of rotator cuff tears.


Subject(s)
Shoulder Joint , Shoulder , Humans , Reproducibility of Results , Isometric Contraction/physiology , Rotator Cuff/physiology , Shoulder Joint/physiology , Muscle Strength/physiology , Muscle Strength Dynamometer
9.
J Neurol ; 270(3): 1600-1614, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36456758

ABSTRACT

Misdiagnosis is frequent in early motor neuron disease (MND), typically compressive radiculopathy, or in patients with restricted MND phenotype. In this retrospective, single tertiary centre study, we measured levels of neurofilament light (NfL) and phosphorylated neurofilament heavy (p-NfH) chain in cerebrospinal fluid (CSF) and of p-NfH in serum with commercially available ELISA kits and assessed their respective diagnostic performance as a marker of MND. The entire study population (n = 164) comprised 71 MND patients, 30 patients with compressive myelo- or radiculopathy, and 63 disease controls (DC). Among MND patients, we specified subgroups with only lower motoneuron involvement (MND-LMN, n = 15) and with confounding nerve roots or spinal cord compression (MND-C, n = 18), representing clinical diagnostic pitfalls. MND-LMN displayed significantly lower CSF NfL (p = 0.003) and p-NFH (p = 0.017), but not serum p-NfH (p = 0.347) levels compared to other MND patients (n = 56). The discriminative ability (area under the curve-AUC) of both CSF Nfs towards all MND patients was comparable to each other but significantly higher than that of p-NfH in serum (ps < 0.001). AUC of both CSF Nfs between MND-LMN and DC and also between MND-C and myelo-/radiculopathies were reduced, as compared to AUC between other MND and DC or myelo-/radiculopathies, respectively. Our results suggest that both Nfs in CSF represent a reliable diagnostic marker in a general MND population, fulfilling Awaji criteria. As for diagnostic pitfalls, and also for p-NfH in serum, their discriminative ability and, therefore, clinical utility appears to be limited.


Subject(s)
Motor Neuron Disease , Radiculopathy , Spinal Cord Diseases , Humans , Retrospective Studies , Intermediate Filaments , Biomarkers , Neurofilament Proteins , Motor Neuron Disease/diagnosis , Phenotype
10.
IEEE Trans Vis Comput Graph ; 29(1): 278-287, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36166524

ABSTRACT

We introduce relaxed dot plots as an improvement of nonlinear dot plots for unit visualization. Our plots produce more faithful data representations and reduce moiré effects. Their contour is based on a customized kernel frequency estimation to match the shape of the distribution of underlying data values. Previous nonlinear layouts introduce column-centric nonlinear scaling of dot diameters for visualization of high-dynamic-range data with high peaks. We provide a mathematical approach to convert that column-centric scaling to our smooth envelope shape. This formalism allows us to use linear, root, and logarithmic scaling to find ideal dot sizes. Our method iteratively relaxes the dot layout for more correct and aesthetically pleasing results. To achieve this, we modified Lloyd's algorithm with additional constraints and heuristics. We evaluate the layouts of relaxed dot plots against a previously existing nonlinear variant and show that our algorithm produces less error regarding the underlying data while establishing the blue noise property that works against moiré effects. Further, we analyze the readability of our relaxed plots in three crowd-sourced experiments. The results indicate that our proposed technique surpasses traditional dot plots.

11.
Arch Rehabil Res Clin Transl ; 5(4): 100289, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38163026

ABSTRACT

Objective: This pilot study compared muscle activity during lateral reaching tasks between mobile and stable sitting using a novel therapy chair in people after stroke and healthy controls. Design: Observational pilot study. Setting: This study was conducted in a rehabilitation center for people after stroke and at the university's movement laboratory for healthy participants. Participants: A total of eleven people after stroke and fifteen healthy people (N=26) took part. Interventions: Lateral reaching exercises to the ipsilateral and contralateral sides were performed on a mobile and a stable seat. Main Outcome Measure: Muscular activity of the multifidus, erector spinae and external oblique was measured bilaterally. A within-subject linear mixed model was applied to analyze the effects of seat condition, task, muscle side, and group. Results: A seat condition effect was found for the multifidus and external oblique that was dependent on the muscle side and task. During ipsilateral reaching, the activity of the multifidi decreased for people after stroke on the mobile seat, while increasing for healthy participants. The erector spinae showed no condition effect. Decreased activity of the external oblique was found for both groups on the mobile seat. Conclusions: Mobile sitting influences muscular activity. However, these preliminary results should be further investigated in order to generate recommendations for rehabilitation.

12.
JMIR Res Protoc ; 11(12): e43769, 2022 Dec 23.
Article in English | MEDLINE | ID: mdl-36563028

ABSTRACT

BACKGROUND: Rotator cuff tears are a common shoulder injury, but they sometimes remain undiagnosed, as symptoms can be limited. Altered shoulder biomechanics can lead to secondary damage and degeneration. In biomechanical analyses, the shoulder (ie, the glenohumeral joint) is normally idealized as a ball-and-socket joint, even though a translation is often observed clinically. To date, no conclusive changes in glenohumeral translation have been reported in patients with rotator cuff tears, and it is unknown how an additional handheld weight that is comparable to those used during daily activities will affect glenohumeral translations in patients with rotator cuff tears. OBJECTIVE: This study aims to assess the load-induced glenohumeral translation (liTr) in patients with rotator cuff tears and its association with the load-induced changes in muscle activation (liMA). METHODS: Patients and asymptomatic controls will be recruited. Participants will fill out health questionnaires and perform 30° arm abduction and adduction trials, during which they will hold different handheld weights of a maximum of 4 kg while motion capture and electromyographic data are collected. In addition, fluoroscopic images of the shoulders will be taken for the same movements. Isometric shoulder muscle strength for abduction and rotation will be assessed with a dynamometer. Finally, shoulder magnetic resonance images will be acquired to assess muscle status and injury presence. The dose-response relationship between additional weight, liTr, and liMA will be evaluated. RESULTS: Recruitment and data collection began in May 2021, and they will last until the recruitment target is achieved. Data collection is expected to be completed by the end of 2022. As of November 2022, data processing and analysis are in progress, and the first results are expected to be submitted for publication in 2023. CONCLUSIONS: This study will aid our understanding of biological variations in liTr, the influence of disease pathology on liTr, the potential compensation of rotator cuff tears by muscle activation and size, and the association between liTr and patient outcomes. The outcomes will be relevant for diagnosis, treatment, and rehabilitation planning in patients with rotator cuff tears. TRIAL REGISTRATION: ClinicalTrials.gov NCT04819724; https://clinicaltrials.gov/ct2/show/NCT04819724. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/43769.

13.
PLoS One ; 17(7): e0272382, 2022.
Article in English | MEDLINE | ID: mdl-35905083

ABSTRACT

The aim of this study was to explore differences in trunk muscle activity on a stable and mobile seat for people after stroke and healthy participants. Trunk control exercises are known to have a beneficial effect on trunk control, balance, and mobility after stroke. The effect of such exercises could be enhanced by the use of a mobile seat to provide further training stimuli. However, little research on the musculoskeletal effects of trunk training on mobile seats has been carried out. On a stable and a mobile seat, thirteen people after stroke and fifteen healthy participants performed two selective trunk control exercises, which were lateral flexion initiated by the pelvis and the thorax. The maximal surface electromyography relative to static sitting of the muscles multifidus, erector spinae, and obliquus externus was recorded bilaterally. The effects of group, seat condition, trunk control exercise, and muscle side were investigated employing within-subject linear-mixed-models. Compared to the stable seat, the maximal muscle activity of people after stroke on the mobile seat was higher during the thorax-initiated exercise and lower during the pelvis-initiated exercise. Healthy participants showed opposite results with higher muscle activity on the mobile seat during the pelvis-initiated exercise. For trunk control training on a mobile seat with high muscle activation people after stroke should perform trunk control exercises initiated by the thorax, for training with lower muscle activity people after stroke should initiate selective trunk movements by the pelvis. The results can support the planning of progressive trunk control rehabilitation programs.


Subject(s)
Stroke Rehabilitation , Stroke , Abdominal Muscles/physiology , Electromyography , Exercise Therapy/methods , Humans , Muscle, Skeletal/physiology , Torso
14.
Biomechanics (Basel) ; 2(2): 255-263, 2022 May 19.
Article in English | MEDLINE | ID: mdl-35677586

ABSTRACT

Rotator cuff tears are often linked to superior translational instability, but a thorough understanding of glenohumeral motion is lacking. This study aimed to assess the reliability of fluoroscopically measured glenohumeral translation during a shoulder abduction test. Ten patients with rotator cuff tears participated in this study. Fluoroscopic images were acquired during 30° abduction and adduction in the scapular plane with and without handheld weights of 2 kg and 4 kg. Images were labelled by two raters, and inferior-superior glenohumeral translation was calculated. During abduction, glenohumeral translation (mean (standard deviation)) ranged from 3.3 (2.2) mm for 0 kg to 4.1 (1.8) mm for 4 kg, and from 2.3 (1.5) mm for 0 kg to 3.8 (2.2) mm for 4 kg for the asymptomatic and symptomatic sides, respectively. For the translation range, moderate to good interrater (intra-class correlation coefficient ICC [95% confidence interval (CI)]; abduction: 0.803 [0.691; 0.877]; adduction: 0.705 [0.551; 0.813]) and intrarater reliabilities (ICC [95% CI]; abduction: 0.817 [0.712; 0.887]; adduction: 0.688 [0.529; 0.801]) were found. Differences in the translation range between the repeated measurements were not statistically significant (mean difference, interrater: abduction, -0.1 mm, p = 0.686; adduction, -0.1 mm, p = 0.466; intrarater: abduction 0.0 mm, p = 0.888; adduction, 0.2 mm, p = 0.275). This method is suitable for measuring inferior-superior glenohumeral translation in the scapular plane.

15.
Brain Behav ; 12(3): e2506, 2022 03.
Article in English | MEDLINE | ID: mdl-35212197

ABSTRACT

INTRODUCTION: Electrophysiological diagnosis of cardiac autonomic neuropathy (CAN) is based on the evaluation of cardiovascular autonomic reflex tests (CARTs). CARTs are relatively time consuming and must be performed under standardized conditions. This study aimed to determine whether thermal quantitative sensory testing (TQST) can be used as a screening tool to identify patients with diabetes at a higher risk of CAN. METHODS: Eighty-five patients with diabetes and 49 healthy controls were included in the study. Neurological examination, CARTs, TQST, biochemical analyses, and neuropathy symptom questionnaires were performed. RESULTS: CAN was diagnosed in 46 patients with diabetes (54%). CAN-positive patients with diabetes had significantly higher warm detection thresholds (WDT) and significantly lower cold detection thresholds (CDT) in all tested regions (thenar, tibia, and the dorsum of the foot). CDT on the dorsum < 21.8°C in combination with CDT on the tibia < 23.15°C showed the best diagnostic ability in CAN prediction, with 97.4 % specificity, 60.9% sensitivity, 96.6% positive predictive value, and 67.3% negative predictive value. CONCLUSION: TQST can be used as a screening tool for CAN before CART.


Subject(s)
Diabetes Mellitus , Diabetic Neuropathies , Nervous System Diseases , Peripheral Nervous System Diseases , Autonomic Nervous System , Diabetic Neuropathies/diagnosis , Humans , Peripheral Nervous System Diseases/diagnosis , Sensory Thresholds/physiology
16.
J Feline Med Surg ; 24(2): 77-90, 2022 02.
Article in English | MEDLINE | ID: mdl-33908810

ABSTRACT

OBJECTIVES: Flow cytometric (FCM) immunophenotyping of lymphoid tissue aspirates is an available adjunct for feline lymphoma diagnostics. Reference data have only been established for feline peripheral blood. Studies investigating the composition of normal and mildly reactive feline lymph nodes (LNs) are lacking. The aim of this prospective study was to establish reference data for lymphocyte subpopulations in normal and mildly reactive feline peripheral LNs using a standardised multicolour panel of antibodies. METHODS: Macroscopically inconspicuous mandibular and/or popliteal LNs from 31 adult cats, which were euthanased for reasons other than haematological diseases, were excised and processed within 5 h after death. Multicolour flow cytometry using eight different feline-specific, anti-canine and human cross-reactive monoclonal antibodies used in current diagnostic marker panels was performed after cytological exclusion of pathological states and complemented by lymphocyte clonality testing, histopathology and immunohistochemistry (IHC) to ensure the absence of lymphoid disease. RESULTS: Of 31 cats, the immunophenotyping data of 24 individuals could be included as histopathology and clonality testing excluded a pathological condition. Lymphocyte populations showed the following positive antibody reactions: CD18+ 86.3% ± 13.86%, CD3+ 54.81% ± 11.10%, CD5+ 57.39% ± 12.66%, CD21+ 40.42% ± 12.40%, CD79alphacy+ (CD79αcy) 30.41% ± 13.49% and CD14+ 0.75% ± 1.35%. There were 30.88% ± 13.48% CD4+ and 12.91% ± 6.68% CD8+ cells. Cytology revealed a mixed population of mostly lymphoid cells in all samples. The absence of a monoclonal/oligoclonal neoplastic population was confirmed by lymphocyte clonality testing. Histopathology and IHC showed a normal or mildly reactive pattern in all cases. CONCLUSIONS AND RELEVANCE: This study establishes FCM immunophenotyping data of lymphocyte populations of normal and mildly reactive feline peripheral LNs. For the first time, anti-CD5, CD4, CD8 and CD21 reference data in normal and mildly reactive feline peripheral LNs are presented. CD18, CD3, CD14 and CD79αcy have been used to establish reference data for the first time in any feline material.


Subject(s)
Lymph Nodes , Lymphocyte Subsets , Animals , Antibodies, Monoclonal , Cats , Flow Cytometry/veterinary , Immunophenotyping/veterinary , Lymph Nodes/cytology , Prospective Studies
17.
F1000Res ; 11: 77, 2022.
Article in English | MEDLINE | ID: mdl-36704048

ABSTRACT

Background: Shoulder biomechanics cannot be measured directly in living persons. While different glenohumeral joint simulators have been developed to investigate the role of the glenohumeral muscles in shoulder biomechanics, a standard for these simulators has not been defined. With this scoping review we want to describe available ex-vivo experimental strategies for assessing unconstrained shoulder biomechanics. Objective: The scoping review aims at identifying methodological and/or experimental studies describing or involving ex-vivo simulators that assess unconstrained shoulder biomechanics and synthesizing their strengths and limitations. Inclusion criteria: All unconstrained glenohumeral joint simulators published in connection with ex-vivo or mechanical simulation experiments will be included. Studies on glenohumeral simulators with active components to mimic the muscles will be included. We will exclude studies where the experiment is static or the motion is induced through an external guide, e.g., a robotic device. Methods: We will perform database searching in PubMed, Embase via Elsevier and Web of Science. Two reviewers will independently assess full texts of selected abstracts. Direct backward and forward citation tracking on included articles will be conducted. We will narratively synthesize the results and derive recommendations for designing ex-vivo simulators for assessing unconstrained shoulder biomechanics.


Subject(s)
Shoulder Joint , Shoulder , Shoulder/physiology , Biomechanical Phenomena , Shoulder Joint/physiology , Muscles , Movement , Review Literature as Topic
18.
Front Vet Sci ; 8: 663656, 2021.
Article in English | MEDLINE | ID: mdl-34268346

ABSTRACT

Recent literature suggests conventional flow cytometric (FCM) immunophenotyping complemented by Ki-67 FCM assessment as a reliable tool to classify canine lymphomas. Ki-67 expression assessed by FCM is rarely reported in canine lymphoma cases and reference data for normal canine lymph nodes are missing. Moreover, nothing is known about the Ki-67 expression within the occasionally observed remnant cell population within the gates of normal lymphocytes in lymphoma cases. Aim of this study was to compare flow cytometric Ki-67 expression of lymphocyte populations from normal canine lymph nodes, lymphoma cells from World-Health-Organisation (WHO) classified lymphoma patient samples and their neighboring normal remnant cell population. Cryopreserved lymphocyte cell suspensions from normal lymph nodes from eight dogs free of lymphoma served as reference material. Fourteen cases diagnosed by cytology, FCM, clonality testing, histopathology including immunohistochemistry consisting of 10 DLBCL, 1 MZL, 1 PTCL and 2 TZL showed a residual small lymphocyte population and were investigated. The Ki-67 expression in normal canine lymphoid tissue was 3.19 ± 2.17%. Mean Ki-67 expression in the malignant cell populations was 41 ± 24.36%. Ki-67 positivity was 12.34 ± 10.68% in the residual physiologic lymphocyte population, which otherwise exhibited a physiologic immunophenotype pattern. This ratio was equivalent (n = 3) or lower (n = 11) than the Ki-67 expression of the malignant cell population within the sample. This is the first report of FCM derived Ki-67 expression combined with immunophenotype patterns in normal canine lymph nodes, compared with lymphoma cell populations and residual normal cell populations of lymphoma cases diagnosed by state of the art technology.

19.
J Neuroeng Rehabil ; 18(1): 120, 2021 07 28.
Article in English | MEDLINE | ID: mdl-34321042

ABSTRACT

BACKGROUND: Technology development for sitting balance therapy and trunk rehabilitation is scarce. Hence, intensive one-to-one therapist-patient training is still required. We have developed a novel rehabilitation prototype, specifically aimed at providing sitting balance therapy. We investigated whether technology-supported sitting balance training was feasible and safe in chronic stroke patients and we determined whether clinical outcomes improved after a four-week programme, compared with usual care. METHODS: In this parallel-group, assessor-blinded, randomized controlled pilot trial, we divided first-event chronic stroke participants into two groups. The experimental group received usual care plus additional therapy supported by rehabilitation technology, consisting of 12 sessions of 50 min of therapy over four weeks. The control group received usual care only. We assessed all participants twice pre-intervention and once post-intervention. Feasibility and safety were descriptively analysed. Between-group analysis evaluated the pre-to-post differences in changes in motor and functional outcomes. RESULTS: In total, 30 participants were recruited and 29 completed the trial (experimental group: n = 14; control group: n = 15). There were no between-group differences at baseline. Therapy was evaluated as feasible by participants and therapist. There were no serious adverse events during sitting balance therapy. Changes in clinical outcomes from pre- to post-intervention demonstrated increases in the experimental than in the control group for: sitting balance and trunk function, evaluated by the Trunk Impairment Scale (mean points score (SD) 7.07 (1.69) versus 0.33 (2.35); p < 0.000); maximum gait speed, assessed with the 10 Metre Walk Test (mean gait speed 0.16 (0.16) m/s versus 0.06 (0.06) m/s; p = 0.003); and functional balance, measured using the Berg balance scale (median points score (IQR) 4.5 (5) versus 0 (4); p = 0.014). CONCLUSIONS: Technology-supported sitting balance training in persons with chronic stroke is feasible and safe. A four-week, 12-session programme on top of usual care suggests beneficial effects for trunk function, maximum gait speed and functional balance. TRIAL REGISTRATION: ClinicalTrials.gov identifier: NCT04467554, https://clinicaltrials.gov/ct2/show/NCT04467554 , date of Registration: 13 July 2020.


Subject(s)
Stroke Rehabilitation , Stroke , Exercise Therapy , Humans , Pilot Projects , Postural Balance , Sitting Position , Technology , Treatment Outcome
20.
Article in English | MEDLINE | ID: mdl-34072243

ABSTRACT

Sedentary behaviour is an emergent public health topic, but there is still no method to simultaneously measure both components of sedentary behaviour-posture and energy expenditure-with one sensor. This study investigated the accuracy and precision of measuring sedentary time when combining the proprietary processing of a posture sensor (activPAL) with a new energy expenditure algorithm and the proprietary processing of a movement sensor (ActiGraph) with a published posture algorithm. One hundred office workers wore both sensors for an average of 7 days. The activPAL algorithm development used 38 and the subsequent independent method comparison 62 participants. The single sensor sedentary estimates were compared with Bland-Atman statistics to the Posture and Physical Activity Index, a combined measurement with both sensors. All single-sensor methods overestimated sedentary time. However, adding the algorithms reduced the overestimation from 129 to 21 (activPAL) and from 84 to 7 min a day (ActiGraph), with far narrower 95% limits of agreements. Thus, combining the proprietary data with the algorithms is an easy way to increase the accuracy and precision of the single sensor sedentary estimates and leads to sedentary estimates that are more precise at the individual level than those of the proprietary processing are at the group level.


Subject(s)
Posture , Sedentary Behavior , Accelerometry , Energy Metabolism , Exercise , Humans , Time
SELECTION OF CITATIONS
SEARCH DETAIL
...