Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Conf Proc IEEE Eng Med Biol Soc ; 2004: 5356-9, 2004.
Article in English | MEDLINE | ID: mdl-17271552

ABSTRACT

Patient monitoring refers to the continuous observation of repeating events of physiologic function to guide therapy or to monitor the effectiveness of interventions, and is used primarily in the intensive care unit and operating room. Commonly processed signals are the electrocardiogram, intraarterial blood pressure, arterial saturation of oxygen, and cardiac output. To this day, the majority of physiologic waveform processing in patient monitors is conducted using heuristic curve fitting. However in the early 1990s, a few enterprising engineers and physicians began using system theory to improve their core processing. Applications included improvement of signal-to-noise ratio, either due to low signal levels or motion artifact, and improvement in feature detection. The goal of this mini-symposium is to review the early work in this emerging field, which has led to technologic breakthroughs. In this overview talk, the process of system theory algorithm research and development is discussed. Research for industrial monitors involves substantial data collection, with some data used for algorithm training and the remainder used for validation. Once the algorithms are validated, they are translated into detailed specifications. Development then translates these specifications into DSP code. The DSP code is verified and validated per the Good Manufacturing Practices mandated by FDA.

2.
Diabetes ; 45(1): 86-90, 1996 Jan.
Article in English | MEDLINE | ID: mdl-8522065

ABSTRACT

We have previously shown that transport of plasma insulin into the central nervous system (CNS) is mediated by a saturable mechanism consistent with insulin binding to blood-brain barrier insulin receptors and subsequent transcytosis through microvessel endothelial cells. Since glucocorticoids antagonize insulin receptor-mediated actions both peripherally and in the CNS, we hypothesized that glucocorticoids also impair CNS insulin transport. Nine dogs were studied both in the control condition and after 7 days of high-dose oral dexamethasone (DEX) administration (12 mg/day) by obtaining plasma and cerebrospinal fluid (CSF) samples over 8 h for determination of immunoreactive insulin levels during a 90-min euglycemic intravenous insulin infusion (plasma insulin approximately 700 pmol/l). From these data, the kinetics of CNS insulin uptake and removal were determined using a mathematical model with three components (plasma-->intermediate compartment, hypothesized to be brain interstitial fluid-->CSF). DEX increased basal insulin levels 75% from 24 +/- 6 to 42 +/- 30 pmol/l (P < 0.005) and slightly increased basal glucose levels from 5.0 +/- 0.7 to 5.3 +/- 1.0 mmol/l (P < 0.05). DEX also lowered the model rate constant characterizing CNS insulin transport by 49% from 5.3 x 10(-6) +/- 4.0 x 10(-6) to 2.7 x 10(-6) +/- 1.2 x 10(-6) min-2 (P < or = 0.001). As glucocorticoids are known to reduce CSF turnover, we also hypothesized that the model rate constant associated with CSF insulin removal would be decreased by DEX. As expected, the model rate constant for CSF insulin removal decreased 47% from 0.038 +/- 0.013 to 0.020 +/- 0.088 min-1 (P < or = 0.0005) during DEX treatment. We conclude that DEX impairs CNS insulin transport. This finding supports our hypothesis that insulin receptors participate in the CNS insulin transport process and that this process may be subject to regulation. Moreover, since increasing brain insulin transport reduces food intake and body adiposity, this observation provides a potential mechanism by which glucocorticoid excess leads to increased body adiposity.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Brain/metabolism , Dexamethasone/pharmacology , Insulin/blood , Animals , Biological Transport/drug effects , Blood-Brain Barrier , Brain/drug effects , Dogs , Infusions, Intravenous , Insulin/cerebrospinal fluid , Male , Models, Biological , Receptor, Insulin/metabolism
3.
J Clin Invest ; 92(4): 1824-30, 1993 Oct.
Article in English | MEDLINE | ID: mdl-8408635

ABSTRACT

By acting in the central nervous system, circulating insulin may regulate food intake and body weight. We have previously shown that the kinetics of insulin uptake from plasma into cerebrospinal fluid (CSF) can best be explained by passage through an intermediate compartment. To determine if transport kinetics into this compartment were consistent with an insulin receptor-mediated transport process, we subjected overnight fasted, anesthetized dogs to euglycemic intravenous insulin infusions for 90 min over a wide range of plasma insulin levels (69-5,064 microU/ml) (n = 10). Plasma and CSF samples were collected over 8 h for determination of immunoreactive insulin levels, and the kinetics of insulin uptake from plasma into CSF were analyzed using a compartmental model with three components (plasma-->intermediate compartment-->CSF). By sampling frequently during rapid changes of plasma and CSF insulin levels, we were able to precisely estimate three parameters (average standard deviation 14%) characterizing the uptake of insulin from plasma, through the intermediate compartment and into CSF (k1k2); insulin entry into CSF and insulin clearance from the intermediate compartment (k2 + k3); and insulin clearance from CSF (k4). At physiologic plasma insulin levels (80 +/- 7.4 microU/ml), k1k2 was determined to be 10.7 x 10(-6) +/- 1.3 x 10(-6) min-2. With increasing plasma levels, however, k1k2 decreased progressively, being reduced sevenfold at supraphysiologic levels (5,064 microU/ml). The apparent KM of this saturation curve was 742 microU/ml (approximately 5 nM). In contrast, the rate constants for insulin removal from the intermediate compartment and from CSF did not vary with plasma insulin (k2 + k3 = 0.011 +/- 0.0019 min-1 and k4 = 0.046 +/- 0.021 min-1). We conclude that delivery of plasma insulin into the central nervous system is saturable, and is likely facilitated by an insulin-receptor mediated transport process.


Subject(s)
Brain/metabolism , Insulin/blood , Insulin/cerebrospinal fluid , Animals , Biological Transport , Dogs , Kinetics , Male , Mathematics , Models, Biological , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL