Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
ChemMedChem ; 18(13): e202300127, 2023 07 03.
Article in English | MEDLINE | ID: mdl-37276375

ABSTRACT

The status of industrial Medicinal Chemistry was discussed with European Medicinal Chemistry Leaders from large to mid-sized pharma and CRO companies as well as biotechs. The chemical modality space has expanded recently from small molecules to address new challenging targets. Besides the classical SAR/SPR optimization of drug molecules also their 'greenness' has increasing importance. The entire pharma discovery ecosystem has developed significantly. Beyond pharma and academia new key players such as Biotech and integrated CROs as well as Digital companies have appeared and are now to a large extend fueled by VC money. Digitalization is happening everywhere but surprisingly did not change speed and success rates of projects so far. Future Medicinal Chemists will still have to be excellent synthetic chemists but in addition they must be knowledgeable in new computational areas such as data sciences. Their ability to collaborate and to work in teams is key.


Subject(s)
Chemistry, Pharmaceutical , Drug Industry , Ecosystem , Europe
2.
J Med Chem ; 66(9): 6122-6148, 2023 05 11.
Article in English | MEDLINE | ID: mdl-37114951

ABSTRACT

Avoidance of apoptosis is critical for the development and sustained growth of tumors. The pro-survival protein myeloid cell leukemia 1 (Mcl-1) is an anti-apoptotic member of the Bcl-2 family of proteins which is overexpressed in many cancers. Upregulation of Mcl-1 in human cancers is associated with high tumor grade, poor survival, and resistance to chemotherapy. Therefore, pharmacological inhibition of Mcl-1 is regarded as an attractive approach to treating relapsed or refractory malignancies. Herein, we disclose the design, synthesis, optimization, and early preclinical evaluation of a potent and selective small-molecule inhibitor of Mcl-1. Our exploratory design tactics focused on structural modifications which improve the potency and physicochemical properties of the inhibitor while minimizing the risk of functional cardiotoxicity. Despite being in the "non-Lipinski" beyond-Rule-of-Five property space, the developed compound benefits from exquisite oral bioavailability in vivo and induces potent pharmacodynamic inhibition of Mcl-1 in a mouse xenograft model.


Subject(s)
Antineoplastic Agents , Hematologic Neoplasms , Humans , Mice , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/chemistry , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Cell Line, Tumor , Apoptosis , Hematologic Neoplasms/drug therapy , Proto-Oncogene Proteins c-bcl-2/metabolism
3.
Invest Radiol ; 57(10): 629-638, 2022 10 01.
Article in English | MEDLINE | ID: mdl-35703267

ABSTRACT

OBJECTIVES: The aim of this report was to characterize the key physicochemical, pharmacokinetic (PK), and magnetic resonance imaging (MRI) properties of gadoquatrane (BAY 1747846), a newly designed tetrameric, macrocyclic, extracellular gadolinium-based contrast agent (GBCA) with high relaxivity and stability. MATERIALS AND METHODS: The r1-relaxivities of the tetrameric gadoquatrane at 1.41 and 3.0 T were determined in human plasma and the nuclear magnetic relaxation dispersion profiles in water and plasma. The complex stability was analyzed in human serum over 21 days at pH 7.4 at 37°C and was compared with the linear GBCA gadodiamide and the macrocyclic GBCA (mGBCA) gadobutrol. In addition, zinc transmetallation assay was performed to investigate the kinetic inertness. Protein binding and the blood-to-plasma ratio were determined in vitro using rat and human plasma. The PK profile was evaluated in rats (up to 7 days postinjection). Magnetic resonance imaging properties were investigated using a glioblastoma (GS9L) rat model. RESULTS: The new chemical entity gadoquatrane is a macrocyclic tetrameric Gd complex with one inner sphere water molecule per Gd ( q = 1). Gadoquatrane showed high solubility in buffer (1.43 mol Gd/L, 10 mM Tris-HCl, pH 7.4), high hydrophilicity (logP -4.32 in 1-butanol/water), and negligible protein binding. The r1-relaxivity of gadoquatrane in human plasma per Gd of 11.8 mM -1 ·s -1 (corresponding to 47.2 mM -1 ·s -1 per molecule at 1.41 T at 37°C, pH 7.4) was more than 2-fold (8-fold per molecule) higher compared with established mGBCAs. Nuclear magnetic relaxation dispersion profiles confirmed the more than 2-fold higher r1-relaxivity in human plasma for the clinically relevant magnetic field strengths from 0.47 to 3.0 T. The complex stability of gadoquatrane at physiological conditions was very high. The observed Gd release after 21 days at 37°C in human serum was below the lower limit of quantification. Gadoquatrane showed no Gd 3+ release in the presence of zinc in the transmetallation assay. The PK profile (plasma elimination, biodistribution, recovery) was comparable to that of gadobutrol. In MRI, the quantitative evaluation of the tumor-to-brain contrast in the rat glioblastoma model showed significantly improved contrast enhancement using gadoquatrane compared with gadobutrol at the same Gd dose administered (0.1 mmol Gd/kg body weight). In comparison to gadoterate meglumine, similar contrast enhancement was reached with gadoquatrane with 75% less Gd dose. In terms of the molecule dose, this was reduced by 90% when compared with gadoterate meglumine. Because of its tetrameric structure and hence lower number of molecules per volume, all prepared formulations of gadoquatrane were iso-osmolar to blood. CONCLUSIONS: The tetrameric gadoquatrane is a novel, highly effective mGBCA for use in MRI. Gadoquatrane provides favorable physicochemical properties (high relaxivity and stability, negligible protein binding) while showing essentially the same PK profile (fast extracellular distribution, fast elimination via the kidneys in an unchanged form) to established mGBCAs on the market. Overall, gadoquatrane is an excellent candidate for further clinical development.


Subject(s)
Glioblastoma , Organometallic Compounds , Animals , Contrast Media/pharmacokinetics , Gadolinium/pharmacokinetics , Humans , Magnetic Resonance Imaging/methods , Organometallic Compounds/pharmacokinetics , Rats , Tissue Distribution , Water , Zinc
4.
ACS Med Chem Lett ; 13(3): 348-357, 2022 Mar 10.
Article in English | MEDLINE | ID: mdl-35300083

ABSTRACT

Mitochondria are key regulators of energy supply and cell death. Generation of ATP within mitochondria occurs through oxidative phosphorylation (OXPHOS), a process which utilizes the four complexes (complex I-IV) of the electron transport chain and ATP synthase. Certain oncogenic mutations (e.g., LKB1 or mIDH) can further enhance the reliance of cancer cells on OXPHOS for their energetic requirements, rendering cells sensitive to complex I inhibition and highlighting the potential value of complex I as a therapeutic target. Herein, we describe the discovery of a potent, selective, and species cross-reactive complex I inhibitor. A high-throughput screen of the Bayer compound library followed by hit triaging and initial hit-to-lead activities led to a lead structure which was further optimized in a comprehensive lead optimization campaign. Focusing on balancing potency and metabolic stability, this program resulted in the identification of BAY-179, an excellent in vivo suitable tool with which to probe the biological relevance of complex I inhibition in cancer indications.

5.
J Med Chem ; 64(21): 15883-15911, 2021 11 11.
Article in English | MEDLINE | ID: mdl-34699202

ABSTRACT

PIP4K2A is an insufficiently studied type II lipid kinase that catalyzes the conversion of phosphatidylinositol-5-phosphate (PI5P) into phosphatidylinositol 4,5-bisphosphate (PI4,5P2). The involvement of PIP4K2A/B in cancer has been suggested, particularly in the context of p53 mutant/null tumors. PIP4K2A/B depletion has been shown to induce tumor growth inhibition, possibly due to hyperactivation of AKT and reactive oxygen species-mediated apoptosis. Herein, we report the identification of the novel potent and highly selective inhibitors BAY-091 and BAY-297 of the kinase PIP4K2A by high-throughput screening and subsequent structure-based optimization. Cellular target engagement of BAY-091 and BAY-297 was demonstrated using cellular thermal shift assay technology. However, inhibition of PIP4K2A with BAY-091 or BAY-297 did not translate into the hypothesized mode of action and antiproliferative activity in p53-deficient tumor cells. Therefore, BAY-091 and BAY-297 serve as valuable chemical probes to study PIP4K2A signaling and its involvement in pathophysiological conditions such as cancer.


Subject(s)
Drug Discovery , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Naphthyridines/chemistry , Phosphotransferases (Alcohol Group Acceptor)/antagonists & inhibitors , Animals , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Screening Assays, Antitumor , High-Throughput Screening Assays , Humans , Mice , Mice, Knockout , Mitochondria/drug effects , Mitochondria/metabolism , Phosphotransferases (Alcohol Group Acceptor)/genetics , Reactive Oxygen Species/metabolism , Signal Transduction/drug effects , Structure-Activity Relationship
6.
SLAS Discov ; 26(8): 947-960, 2021 09.
Article in English | MEDLINE | ID: mdl-34154424

ABSTRACT

SMYD3 (SET and MYND domain-containing protein 3) is a protein lysine methyltransferase that was initially described as an H3K4 methyltransferase involved in transcriptional regulation. SMYD3 has been reported to methylate and regulate several nonhistone proteins relevant to cancer, including mitogen-activated protein kinase kinase kinase 2 (MAP3K2), vascular endothelial growth factor receptor 1 (VEGFR1), and the human epidermal growth factor receptor 2 (HER2). In addition, overexpression of SMYD3 has been linked to poor prognosis in certain cancers, suggesting SMYD3 as a potential oncogene and attractive cancer drug target. Here we report the discovery of a novel SMYD3 inhibitor. We performed a thermal shift assay (TSA)-based high-throughput screening (HTS) with 410,000 compounds and identified a novel benzodiazepine-based SMYD3 inhibitor series. Crystal structures revealed that this series binds to the substrate binding site and occupies the hydrophobic lysine binding pocket via an unprecedented hydrogen bonding pattern. Biochemical assays showed substrate competitive behavior. Following optimization and extensive biophysical validation with surface plasmon resonance (SPR) analysis and isothermal titration calorimetry (ITC), we identified BAY-6035, which shows nanomolar potency and selectivity against kinases and other PKMTs. Furthermore, BAY-6035 specifically inhibits methylation of MAP3K2 by SMYD3 in a cellular mechanistic assay with an IC50 <100 nM. Moreover, we describe a congeneric negative control to BAY-6035. In summary, BAY-6035 is a novel selective and potent SMYD3 inhibitor probe that will foster the exploration of the biological role of SMYD3 in diseased and nondiseased tissues.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Drug Discovery/methods , High-Throughput Screening Assays/methods , Histone-Lysine N-Methyltransferase/antagonists & inhibitors , Histone-Lysine N-Methyltransferase/chemistry , Humans , Hydrogen Bonding , Hydrophobic and Hydrophilic Interactions , Models, Molecular , Protein Binding , Small Molecule Libraries , Structure-Activity Relationship
7.
Cell Oncol (Dordr) ; 44(3): 581-594, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33492659

ABSTRACT

PURPOSE: 5' adenosine monophosphate-activated kinase (AMPK) is an essential regulator of cellular energy homeostasis and has been associated with different pathologies, including cancer. Precisely defining the biological role of AMPK necessitates the availability of a potent and selective inhibitor. METHODS: High-throughput screening and chemical optimization were performed to identify a novel AMPK inhibitor. Cell proliferation and mechanistic assays, as well as gene expression analysis and chromatin immunoprecipitation were used to investigate the cellular impact as well as the crosstalk between lipid metabolism and androgen signaling in prostate cancer models. Also, fatty acid turnover was determined by examining lipid droplet formation. RESULTS: We identified BAY-3827 as a novel and potent AMPK inhibitor with additional activity against ribosomal 6 kinase (RSK) family members. It displays strong anti-proliferative effects in androgen-dependent prostate cancer cell lines. Analysis of genes involved in AMPK signaling revealed that the expression of those encoding 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase (HMGCR), fatty acid synthase (FASN) and 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 2 (PFKFB2), all of which are involved in lipid metabolism, was strongly upregulated by androgen in responsive models. Chromatin immunoprecipitation DNA-sequencing (ChIP-seq) analysis identified several androgen receptor (AR) binding peaks in the HMGCR and PFKFB2 genes. BAY-3827 strongly down-regulated the expression of lipase E (LIPE), cAMP-dependent protein kinase type II-beta regulatory subunit (PRKAR2B) and serine-threonine kinase AKT3 in responsive prostate cancer cell lines. Also, the expression of members of the carnitine palmitoyl-transferase 1 (CPT1) family was inhibited by BAY-3827, and this was paralleled by impaired lipid flux. CONCLUSIONS: The availability of the potent inhibitor BAY-3827 will contribute to a better understanding of the role of AMPK signaling in cancer, especially in prostate cancer.


Subject(s)
AMP-Activated Protein Kinases/antagonists & inhibitors , Antineoplastic Agents/pharmacology , Enzyme Inhibitors/pharmacology , Prostatic Neoplasms , Cell Line, Tumor , Humans , Male , Signal Transduction/drug effects
8.
ChemMedChem ; 15(10): 827-832, 2020 05 19.
Article in English | MEDLINE | ID: mdl-32237114

ABSTRACT

Due to its frequent mutations in multiple lethal cancers, KRAS is one of the most-studied anticancer targets nowadays. Since the discovery of the druggable allosteric binding site containing a G12C mutation, KRASG12C has been the focus of attention in oncology research. We report here a computationally driven approach aimed at identifying novel and selective KRASG12C covalent inhibitors. The workflow involved initial enumeration of virtual molecules tailored for the KRAS allosteric binding site. Tools such as pharmacophore modeling, docking, and free-energy perturbations were deployed to prioritize the compounds with the best profiles. The synthesized naphthyridinone scaffold showed the ability to react with G12C and inhibit KRASG12C . Analogues were prepared to establish structure-activity relationships, while molecular dynamics simulations and crystallization of the inhibitor-KRASG12C complex highlighted an unprecedented binding mode.


Subject(s)
Enzyme Inhibitors/pharmacology , Proto-Oncogene Proteins p21(ras)/antagonists & inhibitors , Allosteric Regulation/drug effects , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemistry , Humans , Molecular Structure , Mutation , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Structure-Activity Relationship
9.
Leukemia ; 33(10): 2403-2415, 2019 10.
Article in English | MEDLINE | ID: mdl-30940908

ABSTRACT

Acute myeloid leukemia (AML) is a devastating disease, with the majority of patients dying within a year of diagnosis. For patients with relapsed/refractory AML, the prognosis is particularly poor with currently available treatments. Although genetically heterogeneous, AML subtypes share a common differentiation arrest at hematopoietic progenitor stages. Overcoming this differentiation arrest has the potential to improve the long-term survival of patients, as is the case in acute promyelocytic leukemia (APL), which is characterized by a chromosomal translocation involving the retinoic acid receptor alpha gene. Treatment of APL with all-trans retinoic acid (ATRA) induces terminal differentiation and apoptosis of leukemic promyelocytes, resulting in cure rates of over 80%. Unfortunately, similarly efficacious differentiation therapies have, to date, been lacking outside of APL. Inhibition of dihydroorotate dehydrogenase (DHODH), a key enzyme in the de novo pyrimidine synthesis pathway, was recently reported to induce differentiation of diverse AML subtypes. In this report we describe the discovery and characterization of BAY 2402234 - a novel, potent, selective and orally bioavailable DHODH inhibitor that shows monotherapy efficacy and differentiation induction across multiple AML subtypes. Herein, we present the preclinical data that led to initiation of a phase I evaluation of this inhibitor in myeloid malignancies.


Subject(s)
Antineoplastic Agents/pharmacology , Cell Differentiation/drug effects , Enzyme Inhibitors/pharmacology , Leukemia, Myeloid, Acute/drug therapy , Oxidoreductases Acting on CH-CH Group Donors/antagonists & inhibitors , Animals , Apoptosis/drug effects , Cell Line, Tumor , Dihydroorotate Dehydrogenase , Female , HL-60 Cells , Humans , Leukemia, Myeloid, Acute/metabolism , Leukemia, Promyelocytic, Acute/drug therapy , Leukemia, Promyelocytic, Acute/metabolism , Mice , Mice, Inbred NOD , Mice, SCID , Pyrimidines/metabolism , THP-1 Cells , Translocation, Genetic/drug effects
10.
J Med Chem ; 62(2): 928-940, 2019 01 24.
Article in English | MEDLINE | ID: mdl-30563338

ABSTRACT

The availability of a chemical probe to study the role of a specific domain of a protein in a concentration- and time-dependent manner is of high value. Herein, we report the identification of a highly potent and selective ERK5 inhibitor BAY-885 by high-throughput screening and subsequent structure-based optimization. ERK5 is a key integrator of cellular signal transduction, and it has been shown to play a role in various cellular processes such as proliferation, differentiation, apoptosis, and cell survival. We could demonstrate that inhibition of ERK5 kinase and transcriptional activity with a small molecule did not translate into antiproliferative activity in different relevant cell models, which is in contrast to the results obtained by RNAi technology.


Subject(s)
Mitogen-Activated Protein Kinase 7/antagonists & inhibitors , Protein Kinase Inhibitors/chemistry , Pyridines/chemistry , Pyrimidines/chemistry , Apoptosis/drug effects , Binding Sites , Cell Differentiation/drug effects , Cell Line , Cell Proliferation/drug effects , Crystallography, X-Ray , Drug Evaluation, Preclinical , Half-Life , Humans , Mitogen-Activated Protein Kinase 7/metabolism , Molecular Docking Simulation , Protein Kinase Inhibitors/metabolism , Protein Kinase Inhibitors/pharmacology , Protein Structure, Tertiary , Pyridines/metabolism , Pyridines/pharmacology , Pyrimidines/metabolism , Pyrimidines/pharmacology , Signal Transduction/drug effects , Structure-Activity Relationship , Transcription, Genetic/drug effects
11.
Mol Cancer Ther ; 17(11): 2285-2296, 2018 11.
Article in English | MEDLINE | ID: mdl-30115664

ABSTRACT

The lactate transporter SLC16A1/monocarboxylate transporter 1 (MCT1) plays a central role in tumor cell energy homeostasis. In a cell-based screen, we identified a novel class of MCT1 inhibitors, including BAY-8002, which potently suppress bidirectional lactate transport. We investigated the antiproliferative activity of BAY-8002 in a panel of 246 cancer cell lines and show that hematopoietic tumor cells, in particular diffuse large B-cell lymphoma cell lines, and subsets of solid tumor models are particularly sensitive to MCT1 inhibition. Associated markers of sensitivity were, among others, lack of MCT4 expression, low pleckstrin homology like domain family A member 2, and high pellino E3 ubiquitin protein ligase 1 expression. The antitumor effect of MCT1 inhibition was less pronounced on tumor xenografts, with tumor stasis being the maximal response. BAY-8002 significantly increased intratumor lactate levels and transiently modulated pyruvate levels. In order to address potential acquired resistance mechanisms to MCT1 inhibition, we generated MCT1 inhibitor-resistant cell lines and show that resistance can occur by upregulation of MCT4 even in the presence of sufficient oxygen, as well as by shifting energy generation toward oxidative phosphorylation. These findings provide insight into novel aspects of tumor response to MCT1 modulation and offer further rationale for patient selection in the clinical development of MCT1 inhibitors. Mol Cancer Ther; 17(11); 2285-96. ©2018 AACR.


Subject(s)
Aminobenzoates/pharmacology , Benzoates/pharmacology , Biomarkers, Tumor/metabolism , Drug Resistance, Neoplasm , Monocarboxylic Acid Transporters/antagonists & inhibitors , Sulfones/pharmacology , Symporters/antagonists & inhibitors , Aminobenzoates/chemistry , Animals , Benzoates/chemistry , Biological Transport/drug effects , Carbon Radioisotopes , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Resistance, Neoplasm/drug effects , Fluorescence , Humans , Hydrogen-Ion Concentration , Lactic Acid/metabolism , Mice, SCID , Monocarboxylic Acid Transporters/metabolism , Muscle Proteins/metabolism , Pyrimidinones/pharmacology , Pyruvic Acid/metabolism , Sulfones/chemistry , Symporters/metabolism , Thiophenes/pharmacology , Treatment Outcome , Xenopus laevis
12.
Elife ; 72018 04 20.
Article in English | MEDLINE | ID: mdl-29676732

ABSTRACT

Potent, selective and broadly characterized small molecule modulators of protein function (chemical probes) are powerful research reagents. The pharmaceutical industry has generated many high-quality chemical probes and several of these have been made available to academia. However, probe-associated data and control compounds, such as inactive structurally related molecules and their associated data, are generally not accessible. The lack of data and guidance makes it difficult for researchers to decide which chemical tools to choose. Several pharmaceutical companies (AbbVie, Bayer, Boehringer Ingelheim, Janssen, MSD, Pfizer, and Takeda) have therefore entered into a pre-competitive collaboration to make available a large number of innovative high-quality probes, including all probe-associated data, control compounds and recommendations on use (https://openscienceprobes.sgc-frankfurt.de/). Here we describe the chemical tools and target-related knowledge that have been made available, and encourage others to join the project.


Subject(s)
Molecular Probes/metabolism , Pharmacology/methods , Proteins/metabolism , Technology, Pharmaceutical/methods
13.
J Med Chem ; 61(6): 2533-2551, 2018 03 22.
Article in English | MEDLINE | ID: mdl-29485874

ABSTRACT

Recent literature has both suggested and questioned MTH1 as a novel cancer target. BAY-707 was just published as a target validation small molecule probe for assessing the effects of pharmacological inhibition of MTH1 on tumor cell survival, both in vitro and in vivo. (1) In this report, we describe the medicinal chemistry program creating BAY-707, where fragment-based methods were used to develop a series of highly potent and selective MTH1 inhibitors. Using structure-based drug design and rational medicinal chemistry approaches, the potency was increased over 10,000 times from the fragment starting point while maintaining high ligand efficiency and drug-like properties.


Subject(s)
Antineoplastic Agents/pharmacology , DNA Repair Enzymes/antagonists & inhibitors , Morpholines/pharmacology , Phosphoric Monoester Hydrolases/antagonists & inhibitors , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacokinetics , Caco-2 Cells , Cell Membrane Permeability , Drug Design , Drug Discovery , Drug Evaluation, Preclinical , Hepatocytes/metabolism , Humans , Mice , Microsomes, Liver/metabolism , Models, Molecular , Molecular Structure , Morpholines/chemistry , Morpholines/pharmacokinetics , Rats , Rats, Wistar , Structure-Activity Relationship
14.
ACS Chem Biol ; 12(8): 1986-1992, 2017 08 18.
Article in English | MEDLINE | ID: mdl-28679043

ABSTRACT

MTH1 is a hydrolase responsible for sanitization of oxidized purine nucleoside triphosphates to prevent their incorporation into replicating DNA. Early tool compounds published in the literature inhibited the enzymatic activity of MTH1 and subsequently induced cancer cell death; however recent studies have questioned the reported link between these two events. Therefore, it is important to validate MTH1 as a cancer dependency with high quality chemical probes. Here, we present BAY-707, a substrate-competitive, highly potent and selective inhibitor of MTH1, chemically distinct compared to those previously published. Despite superior cellular target engagement and pharmacokinetic properties, inhibition of MTH1 with BAY-707 resulted in a clear lack of in vitro or in vivo anticancer efficacy either in mono- or in combination therapies. Therefore, we conclude that MTH1 is dispensable for cancer cell survival.


Subject(s)
DNA Repair Enzymes/metabolism , Drug Delivery Systems , Morpholines/pharmacology , Neoplasms/drug therapy , Neoplasms/enzymology , Phosphoric Monoester Hydrolases/metabolism , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Caco-2 Cells , Cells, Cultured , DNA Repair Enzymes/antagonists & inhibitors , Enzyme Activation/drug effects , HeLa Cells , Hepatocytes/drug effects , Humans , MCF-7 Cells , Mice , Mice, Nude , Microsomes, Liver/drug effects , Models, Molecular , Morpholines/chemistry , Neoplasms/physiopathology , Phosphoric Monoester Hydrolases/antagonists & inhibitors , Pyrimidines/chemistry , Pyrimidines/pharmacology , Rats
15.
Inorg Chem ; 56(10): 5757-5761, 2017 May 15.
Article in English | MEDLINE | ID: mdl-28430423

ABSTRACT

Heavy-metal-based contrast agents (CAs) offer enhanced X-ray absorption for X-ray computed tomography (CT) compared to the currently used iodinated CAs. We report the discovery of new lanthanide and hafnium azainositol complexes and their optimization with respect to high water solubility and stability. Our efforts culminated in the synthesis of BAY-576, an uncharged hafnium complex with 3:2 stoichiometry and broken complex symmetry. The superior properties of this asymmetrically substituted hafnium CA were demonstrated by a CT angiography study in rabbits that revealed excellent signal contrast enhancement.


Subject(s)
Contrast Media/chemistry , Coordination Complexes/chemistry , Hafnium/chemistry , Tomography, X-Ray Computed , Animals , Coordination Complexes/chemical synthesis , Molecular Structure , Rabbits
16.
J Nucl Med ; 58(7): 1094-1099, 2017 07.
Article in English | MEDLINE | ID: mdl-28302764

ABSTRACT

Thromboembolic diseases such as myocardial infarction, stroke, transient ischemic attacks, and pulmonary embolism are major causes of morbidity and mortality worldwide. Glycoprotein IIb/IIIa (GPIIb/IIIa) is the key receptor involved in platelet aggregation and is a validated target for therapeutic approaches and diagnostic imaging. The aim of this study was to develop and characterize a specific small-molecule tracer for PET imaging that binds with high affinity to GPIIb/IIIa receptors and has suitable pharmacokinetic properties to overcome limitations of previous approaches. Methods: Binding of 18F-GP1 to GPIIb/IIIa receptors was investigated in competition binding assays and autoradiography using a fresh cardiac thrombus from an explanted human heart. The clot-to-blood ratio for 18F-GP1 was investigated by an in vitro blood flow model. Biodistribution and thrombus detection was investigated in cynomolgus monkeys after insertion of a roughened catheter into either the vena cava or the aorta. Results:18F-GP1 is an 18F-labeled small molecule for PET imaging of thrombi. The half maximal inhibitory concentration of 18F-GP1 to GPIIb/IIIa was 20 nM. 18F-GP1 bound to thrombi with a mean clot-to-blood ratio of 95. Binding was specific and can be displaced by excess nonradioactive derivative. Binding was not affected by anticoagulants such as aspirin or heparin. 18F-GP1 showed rapid blood clearance and a low background after intravenous injection in cynomolgus monkeys. Small arterial, venous thrombi, thrombotic depositions on damaged endothelial surface, and small cerebral emboli were detected in vivo by PET imaging. Conclusions:18F-GP1 binds specifically with high affinity to the GPIIb/IIIa receptor involved in platelet aggregation. Because of its favorable preclinical characteristics, 18F-GP1 is currently being investigated in a human clinical study.


Subject(s)
Glutamine/analogs & derivatives , Laurates/pharmacokinetics , Molecular Imaging/methods , Platelet Glycoprotein GPIIb-IIIa Complex/metabolism , Positron-Emission Tomography/methods , Thrombosis/diagnostic imaging , Thrombosis/metabolism , Animals , Female , Fluorine Radioisotopes/chemistry , Fluorine Radioisotopes/pharmacokinetics , Glutamine/pharmacokinetics , Humans , Isotope Labeling/methods , Macaca fascicularis , Radiopharmaceuticals/chemical synthesis , Radiopharmaceuticals/pharmacokinetics , Reproducibility of Results , Sensitivity and Specificity
17.
ChemMedChem ; 11(20): 2261-2271, 2016 10 19.
Article in English | MEDLINE | ID: mdl-27552707

ABSTRACT

Despite the long-known fact that the facilitative glucose transporter GLUT1 is one of the key players safeguarding the increase in glucose consumption of many tumor entities even under conditions of normal oxygen supply (known as the Warburg effect), only few endeavors have been undertaken to find a GLUT1-selective small-molecule inhibitor. Because other transporters of the GLUT1 family are involved in crucial processes, these transporters should not be addressed by such an inhibitor. A high-throughput screen against a library of ∼3 million compounds was performed to find a small molecule with this challenging potency and selectivity profile. The N-(1H-pyrazol-4-yl)quinoline-4-carboxamides were identified as an excellent starting point for further compound optimization. After extensive structure-activity relationship explorations, single-digit nanomolar inhibitors with a selectivity factor of >100 against GLUT2, GLUT3, and GLUT4 were obtained. The most promising compound, BAY-876 [N4 -[1-(4-cyanobenzyl)-5-methyl-3-(trifluoromethyl)-1H-pyrazol-4-yl]-7-fluoroquinoline-2,4-dicarboxamide], showed good metabolic stability in vitro and high oral bioavailability in vivo.


Subject(s)
Glucose Transporter Type 1/antagonists & inhibitors , Pyrazoles/pharmacology , Quinolines/pharmacology , Administration, Oral , Biological Availability , Glucose Transporter Type 1/metabolism , High-Throughput Screening Assays , Humans , Molecular Structure , Pyrazoles/administration & dosage , Pyrazoles/chemistry , Quinolines/administration & dosage , Quinolines/chemistry , Structure-Activity Relationship
18.
ACS Comb Sci ; 18(9): 569-74, 2016 09 12.
Article in English | MEDLINE | ID: mdl-27518324

ABSTRACT

Efficient syntheses of chiral fragments derived from chiral amino alcohols are described. Several unique scaffolds were readily accessed in 1-5 synthetic steps leading to 45 chiral fragments, including oxazolidinones, morpholinones, lactams, and sultams. These fragments have molecular weights ranging from 100 to 255 Da and are soluble in water (0.085 to >15 mM).


Subject(s)
Amino Alcohols/analysis , Amino Alcohols/chemistry , Drug Discovery , Humans , Lactams/chemistry , Molecular Weight , Morpholines/chemistry , Naphthalenesulfonates/chemistry , Oxazolidinones/chemistry , Stereoisomerism
19.
Invest Radiol ; 51(12): 776-785, 2016 12.
Article in English | MEDLINE | ID: mdl-27299578

ABSTRACT

OBJECTIVE: Characterization of BAY-576, a new x-ray contrast agent which is not based on iodine, but rather on the heavy metal hafnium. Compared with iodine, hafnium provides better x-ray absorption in the energy range of computed tomography (CT) and allows images of comparable quality to be acquired at a significantly reduced radiation dose. MATERIALS AND METHODS: A range of standard methods were used to explore the physicochemistry of BAY-576 as well as its tolerability in in vitro assays, its pharmacokinetics and toxicology in rats, and its performance in CT imaging in rabbits. RESULTS: BAY-576 is an extraordinarily stable chelate with a metal content of 42% (wt/wt) and with excellent water solubility. Formulations of 300 mg Hf/mL exhibited viscosity (3.3-3.6 mPa) and osmolality (860-985 mOsm/kg) in the range of nonionic x-ray agents. No relevant effects on erythrocytes, the coagulation, or complement system or on a panel of 87 potential biological targets were observed. The compound did not bind to plasma proteins of a number of species investigated. After intravenous injection in rats, it was excreted fast and mainly via the kidneys. Its pharmacokinetics was comparable to known extracellular contrast agents. A dose of 6000 mg Hf/kg, approximately 10 to 20 times the expected diagnostic dose, was well tolerated by rats with only moderate adverse effects. Computed tomography imaging in rabbits bearing a tumor in the liver demonstrated excellent image quality when compared with iopromide at the same contrast agent dose in angiography during the arterial phase. At 70% of the radiation dose, BAY-576 provided a contrast-to-noise ratio of the tumor, which was equivalent to iopromide at 100% radiation dose. CONCLUSIONS: The profile of BAY-576 indicates its potential as the first compound in a new class of noniodine x-ray contrast agents, which can contribute to the reduction of the radiation burden in contrast-enhanced CT imaging.


Subject(s)
Contrast Media/pharmacokinetics , Hafnium/pharmacokinetics , Liver Neoplasms, Experimental/diagnostic imaging , Radiographic Image Enhancement/methods , Tomography, X-Ray Computed/methods , Animals , Contrast Media/toxicity , Disease Models, Animal , Hafnium/toxicity , Liver/diagnostic imaging , Phantoms, Imaging , Rabbits , Rats , Rats, Wistar
20.
Bioorg Med Chem Lett ; 26(7): 1732-7, 2016 Apr 01.
Article in English | MEDLINE | ID: mdl-26949183

ABSTRACT

The compound class of 1H-pyrazolo[3,4-d]pyrimidines was identified using HTS as very potent inhibitors of facilitated glucose transporter 1 (GLUT1). Extensive structure-activity relationship studies (SAR) of each ring system of the molecular framework was established revealing essential structural motives (i.e., ortho-methoxy substituted benzene, piperazine and pyrimidine). The selectivity against GLUT2 was excellent and initial in vitro and in vivo pharmacokinetic (PK) studies are encouraging.


Subject(s)
Glucose Transporter Type 1/antagonists & inhibitors , Pyrimidines/chemistry , Pyrimidines/pharmacology , Animals , Cell Line , Drug Discovery , Glucose Transporter Type 1/metabolism , Humans , Male , Pyrimidines/pharmacokinetics , Rats, Wistar , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...