Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 119(37): e2203230119, 2022 09 13.
Article in English | MEDLINE | ID: mdl-36067290

ABSTRACT

Overwintering success is an important determinant of arthropod populations that must be considered as climate change continues to influence the spatiotemporal population dynamics of agricultural pests. Using a long-term monitoring database and biologically relevant overwintering zones, we modeled the annual and seasonal population dynamics of a common pest, Helicoverpa zea (Boddie), based on three overwintering suitability zones throughout North America using four decades of soil temperatures: the southern range (able to persist through winter), transitional zone (uncertain overwintering survivorship), and northern limits (unable to survive winter). Our model indicates H. zea population dynamics are hierarchically structured with continental-level effects that are partitioned into three geographic zones. Seasonal populations were initially detected in the southern range, where they experienced multiple large population peaks. All three zones experienced a final peak between late July (southern range) and mid-August to mid-September (transitional zone and northern limits). The southern range expanded by 3% since 1981 and is projected to increase by twofold by 2099 but the areas of other zones are expected to decrease in the future. These changes suggest larger populations may persist at higher latitudes in the future due to reduced low-temperature lethal events during winter. Because H. zea is a highly migratory pest, predicting when populations accumulate in one region can inform synchronous or lagged population development in other regions. We show the value of combining long-term datasets, remotely sensed data, and laboratory findings to inform forecasting of insect pests.


Subject(s)
Climate Change , Moths , Seasons , Animals , Population Dynamics , Temperature
2.
J Econ Entomol ; 113(5): 2197-2212, 2020 10 16.
Article in English | MEDLINE | ID: mdl-32651951

ABSTRACT

A 4-yr study was conducted comparing the efficacy and value of fungicide-only (FST), neonicotinoid insecticide + fungicide (NST), and diamide insecticide + fungicide (DST) seed treatments for commercial corn Zea mays L. and soybean Glycines max (L.) Merr. production in Ontario, Canada. Plant stand, plant vigor, above- and below-ground insect injury, and yield were assessed on 160 field-scale experiments. Experiments also assessed early-season insect incidence and abundance using newly legislated thresholds for NST use in Ontario and in-season destructive sampling. Wireworms (Coleoptera: Elateridae) and white grubs (Coleoptera: Scarabeidae) were frequently observed at experimental sites; however, thresholds were rarely met and injury levels rarely led to yield loss. Of 129 and 31 corn and soybean sites, 8 and 6%, respectively, had a positive yield response to NST use. Across all sites, yield response of 0.1 and -0.05 Mg ha-1 was observed with NST use in corn and soybean, respectively; however, the costs associated with NST use were recovered at only 48 and 23% of corn and soybean sites, respectively, based on average grain prices and yields during the study. Infrequent incidence of economic injury and the absence of a consistent yield response to NST and DSTs throughout the 4 yr of the study indicate that widespread use of seed-applied insecticides in corn and soybean is unlikely to provide benefit to producers. These data highlight an opportunity for reducing input costs, environmental loading, and nontarget effects without adverse outcomes for Ontario producers.


Subject(s)
Insecticides , Animals , Insecticides/analysis , Neonicotinoids , Ontario , Seasons , Seeds/chemistry , Glycine max , Zea mays
3.
PLoS One ; 14(4): e0214787, 2019.
Article in English | MEDLINE | ID: mdl-30947236

ABSTRACT

Neonicotinoids are widely used class of insecticides. Most are seed treatments and during planting active ingredient may be abraded and lost in fugitive dust. Much of this active ingredient contaminates surface waters, exposing aquatic organism to potential ill effects. This study examines concentrations of neonicotinoids appearing in tile drains and open ditches around commercial maize fields around planting time where neonicotinoid seed treatments had been used. This sample set represents surface water leaving the point of origin, for which data are sparse. Clothianidin was found more often than thiamethoxam and at higher concentrations; at a median concentration of 0.35 ng/mL in tile drain water and almost twice that (0.68 ng/mL) in ditches into which the tiles are draining after applications of 19 g/ha on seed. This concentration reveals a 40 to 50 fold dilution for neonicotinoid residues between the points where they leave the field in which they were applied and when they are found in nearby streams in a similar ecosystem. Our data support that for a no-observed-effect concentration of 0.3 ng/mL for thiamethoxam there would be between a 1.6 and 100-fold margin of safety to mayflies in most streams if fugitive dust on pneumatic planters were properly mitigated.


Subject(s)
Insecticides/analysis , Neonicotinoids/analysis , Water Pollutants, Chemical/analysis , Animals , Dust/analysis , Ecosystem , Ephemeroptera , Guanidines/administration & dosage , Guanidines/analysis , Insecticides/administration & dosage , Insecticides/toxicity , Neonicotinoids/administration & dosage , No-Observed-Adverse-Effect Level , Ontario , Pesticide Residues/analysis , Pesticide Residues/toxicity , Seeds , Soil Pollutants/analysis , Thiamethoxam/administration & dosage , Thiamethoxam/analysis , Thiazoles/administration & dosage , Thiazoles/analysis , Zea mays
4.
Environ Toxicol Chem ; 35(2): 295-302, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26332416

ABSTRACT

Neonicotinoid insecticides, especially as seed treatments, have raised concerns about environmental loading and impacts on pollinators, biodiversity, and ecosystems. The authors measured concentrations of neonicotinoid residues in the top 5 cm of soil before planting of maize (corn) in 18 commercial fields with a history of neonicotinoid seed treatment use in southwestern Ontario in 2013 and 2014 using liquid chromatography-tandem mass spectrometry with electrospray ionization. A simple calculator based on first-order kinetics, incorporating crop rotation, planting date, and seed treatment history from the subject fields, was used to estimate dissipation rate from the seed zone. The estimated half-life (the time taken for 50% of the insecticide to have dissipated by all mechanisms) based on 8 yr of crop history was 0.64 (range, 0.25-1.59) yr and 0.57 (range, 0.24-2.12) yr for 2013 and 2014, respectively. In fields where neonicotinoid residues were measured in both years, the estimated mean half-life between 2013 and 2014 was 0.4 (range, 0.27-0.6) yr. If clothianidin and thiamethoxam were used annually as a seed treatment in a typical crop rotation of maize, soybean, and winter wheat over several years, residues would plateau rather than continue to accumulate. Residues of neonicotinoid insecticides after 3 yr to 4 yr of repeated annual use tend to plateau to a mean concentration of less than 6 ng/g in agricultural soils in southwestern Ontario.


Subject(s)
Cholinergic Agents/analysis , Insecticides/analysis , Seeds/chemistry , Soil Pollutants/analysis , Zea mays/chemistry , Agriculture , Ecosystem , Guanidines/analysis , Half-Life , Neonicotinoids , Nitro Compounds/analysis , Ontario , Oxazines/analysis , Pesticide Residues/analysis , Thiamethoxam , Thiazoles/analysis
5.
Environ Toxicol Chem ; 35(2): 303-10, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26395849

ABSTRACT

Using neonicotinoid insecticides as seed treatments is a common practice in field crop production. Exposure of nontarget organisms to neonicotinoids present in various environmental matrices is debated. In the present study, concentrations of neonicotinoid residues were measured in the top 5 cm of soil and overlying soil surface dust before planting in 25 commercial fields with a history of neonicotinoid seed treatment use in southwestern Ontario in 2013 and 2014 using liquid chromatography-electrospray ionization tandem mass spectrometry. The mean total concentrations were 3.05 ng/g and 47.84 ng/g in 2013 and 5.59 ng/g and 71.17 ng/g in 2014 for parent soil and soil surface dust, respectively. When surface and parent soil residues were compared the mean concentration in surface dust was 15.6-fold and 12.7-fold higher than that in parent soil in 2013 and 2014, respectively. Pooled over years, the surface dust to parent soil ratio was 13.7, with mean concentrations of 4.36 ng/g and 59.86 ng/g for parent soil and surface dust, respectively. The present study's results will contribute important knowledge about the role these residues may play in the overall risk assessment currently under way for the source, transport, and impact of neonicotinoid insecticide residues in a maize ecosystem.


Subject(s)
Cholinergic Agents/analysis , Insecticides/analysis , Seeds/chemistry , Soil Pollutants/analysis , Soil/chemistry , Zea mays/chemistry , Agriculture , Dust/analysis , Ecosystem , Guanidines/analysis , Half-Life , Neonicotinoids , Nitro Compounds/analysis , Ontario , Oxazines/analysis , Pesticide Residues/analysis , Thiamethoxam , Thiazoles/analysis
6.
Environ Sci Technol ; 49(21): 13003-11, 2015 Nov 03.
Article in English | MEDLINE | ID: mdl-26437361

ABSTRACT

Neonicotinoid residues escaping in vacuum-planter exhaust during maize planting were measured in 25 fields in southwestern Ontario in 2013-2014 using filter bags to collect planter exhaust dust and horizontal and vertical sticky traps to collect planter operation-generated dust. Atrazine residues were used to differentiate between neonicotinoid residues originating from seed or from disturbed soil. Recovery rates of seed-applied neonicotinoids in exhaust were 0.014 and 0.365% in 2013 and 2014, respectively, calculated on the basis of neonicotinoid concentrations in preplant soil and seed application rates. Neonicotinoid exhaust emission rates were 0.0036 and 0.1104 g/ha for 2013 and 2014, respectively, with 99.9472 and 99.7820% originating from treated seed in 2013 and 2014, respectively, calculated on the basis of the atrazine marker. Rates of recovery of seed-applied neonicotinoid residues by exhaust filter bags were 0.015 and 0.437% for 2013 and 2014, respectively. Neonicotinoid residues captured on horizontal and vertical traps were 1.10 ng/cm2 (0.1104 g/ha) and 1.45 ng/cm2 (0.0029 g/ha), respectively, with 92.31 and 93.03% originating from treated seed, respectively, representing 0.3896% of the original active ingredient applied to the seed planted. Exposure to pollinators can be best reduced by strategies to keep active ingredient on the seed, below the soil surface, and in the field where applied.


Subject(s)
Anabasine/analysis , Insecticides/analysis , Vacuum , Zea mays/growth & development , Atrazine/analysis , Ontario , Seeds/chemistry , Soil/chemistry
7.
PLoS One ; 10(2): e0118139, 2015.
Article in English | MEDLINE | ID: mdl-25710560

ABSTRACT

Neonicotinoid insecticides have come under scrutiny for their potential unintended effects on non-target organisms, particularly pollinators in agro-ecosystems. As part of a larger study of neonicotinoid residues associated with maize (corn) production, 76 water samples within or around the perimeter of 18 commercial maize fields and neighbouring apiaries were collected in 5 maize-producing counties of southwestern Ontario. Residues of clothianidin (mean = 2.28, max. = 43.60 ng/mL) and thiamethoxam (mean = 1.12, max. = 16.50 ng/mL) were detected in 100 and 98.7% of the water samples tested, respectively. The concentration of total neonicotinoid residues in water within maize fields increased six-fold during the first five weeks after planting, and returned to pre-plant levels seven weeks after planting. However, concentrations in water sampled from outside the fields were similar throughout the sampling period. Soil samples from the top 5 cm of the soil profile were also collected in these fields before and immediately following planting. The mean total neonicotinoid residue was 4.02 (range 0.07 to 20.30) ng/g, for samples taken before planting, and 9.94 (range 0.53 to 38.98) ng/g, for those taken immediately after planting. Two soil samples collected from within an conservation area contained detectable (0.03 and 0.11 ng/g) concentrations of clothianidin. Of three drifted snow samples taken, the drift stratum containing the most wind-scoured soil had 0.16 and 0.20 ng/mL mainly clothianidin in the melted snow. The concentration was at the limit of detection (0.02 ng/mL) taken across the entire vertical profile. With the exception of one sample, water samples tested had concentrations below those reported to have acute, chronic or sublethal effects to honey bees. Our results suggest that neonicotinoids may move off-target by wind erosion of contaminated soil. These results are informative to risk assessment models for other non-target species in maize agro-ecosytems.


Subject(s)
Fresh Water/chemistry , Insecticides/analysis , Soil Pollutants/analysis , Soil/chemistry , Water Pollutants, Chemical/analysis , Chromatography, High Pressure Liquid , Guanidines/analysis , Guanidines/isolation & purification , Insecticides/isolation & purification , Neonicotinoids , Nitro Compounds/analysis , Nitro Compounds/isolation & purification , Ontario , Oxazines/analysis , Oxazines/isolation & purification , Soil Pollutants/isolation & purification , Solid Phase Extraction , Tandem Mass Spectrometry , Thiamethoxam , Thiazoles/analysis , Thiazoles/isolation & purification , Water Pollutants, Chemical/isolation & purification , Zea mays/growth & development
8.
J Econ Entomol ; 104(2): 343-52, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21510178

ABSTRACT

The use of mixtures of transgenic insecticidal seed and nontransgenic seed to provide an in-field refuge for susceptible insects in insect-resistance-management (IRM) plans has been considered for at least two decades. However, the U.S. Environmental Protection Agency has only recently authorized the practice. This commentary explores issues that regulators, industry, and other stakeholders should consider as the use of biotechnology increases and seed mixtures are implemented as a major tactic for IRM. We discuss how block refuges and seed mixtures in transgenic insecticidal corn, Zea mays L., production will influence integrated pest management (IPM) and the evolution of pest resistance. We conclude that seed mixtures will make pest monitoring more difficult and that seed mixtures may make IRM riskier because of larval behavior and greater adoption of insecticidal corn. Conversely, block refuges present a different suite of risks because of adult pest behavior and the lower compliance with IRM rules expected from farmers. It is likely that secondary pests not targeted by the insecticidal corn as well as natural enemies will respond differently to block refuges and seed mixtures.


Subject(s)
Behavior, Animal , Insect Control , Insecticide Resistance , Plants, Genetically Modified , Seeds , Zea mays/genetics , Animals , Humans
9.
J Econ Entomol ; 95(1): 57-64, 2002 Feb.
Article in English | MEDLINE | ID: mdl-11942765

ABSTRACT

Transgenic corn expressing Bacillus thuringiensis Berliner (Bt corn) (Maximizer and Yieldgard hybrids, Novartis Seeds), non-Bt isolines and high-performance (check) hybrids were evaluated for European corn borer, Ostrinia nubilalis (Hübner), damage and grain yield in commercial strip plots across Ontario in 1996 and 1997. Bt corn hybrids reduced stalk tunneling damage by 88-100%. In 1996, minimal damage was found in locations where only one generation of European corn borer occurred per year. Bt corn proved its greatest potential for reducing the number and length of cavities below the primary ear in locations where two generations of European corn borer were present. A yield response to using Bt hybrids only occurred when levels of tunneling damage exceeded 6 cm in length. European corn borer infestations resulted in a 6 and 2.4% reduction in yield for 1996 and 1997, respectively, when Bt hybrids were compared with their non-Bt isolines. A linear relationship was found between tunnel length per plant in centimeters (x) and yield protection (%) obtained from using Bt corn (y) (y = 1.02 + 0.005x, r2 = 0.7217). At a premium of $34.58 Canadian (CDN) perhectare for Bt corn seed, an infestation of at least 6 cm of corn borer tunneling per plant was required to break even at a market price for corn of $2.50 per bushel CDN. During the period of study, low infestations (0-2 cm) of European corn borer occurred at 25% of the locations assessed, moderate infestations (4-6 cm) occurred at 42% of the locations, and high infestations (>6 cm) occurred at 33% of the locations. At a corn price of $3.00 per bushel CDN and seed premiums of $34.58 per hectare CDN, 5 cm of tunneling was required for a return on investment in Bt seed, comprising only 55% of the growers in the study. With infestations of more than 6 cm of tunneling occurring only 33% of the time, a return on seed investment would be realized in only one of three growing seasons. At a seed premium of $24.70 per hectare CDN per year, at least $74 per hectare CDN in the year of infestation would be required to make up for the two years of no return. In this study, a $74 per hectare CDN return at a corn price of $9.26 per hectare CDN with >16 cm of tunneling damage would have occurred only 7.3% of the time.


Subject(s)
Bacillus thuringiensis , Bacterial Proteins , Bacterial Toxins , Endotoxins , Moths , Pest Control, Biological/economics , Zea mays , Animals , Bacillus thuringiensis/genetics , Bacillus thuringiensis Toxins , Bacterial Proteins/genetics , Bacterial Toxins/genetics , Canada , Cost-Benefit Analysis , Crops, Agricultural , Endotoxins/genetics , Hemolysin Proteins , Pest Control, Biological/methods , Plants, Genetically Modified
SELECTION OF CITATIONS
SEARCH DETAIL
...