Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
Nat Ecol Evol ; 7(9): 1503-1514, 2023 09.
Article in English | MEDLINE | ID: mdl-37500909

ABSTRACT

Archaic admixture has had a substantial impact on human evolution with multiple events across different clades, including from extinct hominins such as Neanderthals and Denisovans into modern humans. In great apes, archaic admixture has been identified in chimpanzees and bonobos but the possibility of such events has not been explored in other species. Here, we address this question using high-coverage whole-genome sequences from all four extant gorilla subspecies, including six newly sequenced eastern gorillas from previously unsampled geographic regions. Using approximate Bayesian computation with neural networks to model the demographic history of gorillas, we find a signature of admixture from an archaic 'ghost' lineage into the common ancestor of eastern gorillas but not western gorillas. We infer that up to 3% of the genome of these individuals is introgressed from an archaic lineage that diverged more than 3 million years ago from the common ancestor of all extant gorillas. This introgression event took place before the split of mountain and eastern lowland gorillas, probably more than 40 thousand years ago and may have influenced perception of bitter taste in eastern gorillas. When comparing the introgression landscapes of gorillas, humans and bonobos, we find a consistent depletion of introgressed fragments on the X chromosome across these species. However, depletion in protein-coding content is not detectable in eastern gorillas, possibly as a consequence of stronger genetic drift in this species.


Subject(s)
Hominidae , Neanderthals , Animals , Humans , Gorilla gorilla/genetics , Pan paniscus/genetics , Bayes Theorem , Hominidae/genetics , Pan troglodytes , Neanderthals/genetics
2.
Mol Clin Oncol ; 18(1): 5, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36605097

ABSTRACT

Triple negative breast cancer (TNBC) is an aggressive type of cancer that accounts for ~23% of breast tumors in Mexico. In an attempt to understand in an improved way the behavior of TNBC, throughout the years, gene expression in these tumors has been studied. Lehman et al identified 6 subtypes of gene expression in TNBC with distinct characteristics. In the present study, it was aimed to assess clinical, pathological and prognostic characteristics of TNBC in a Mexican-based cohort. A total of 55 patients diagnosed with TNBC at Mexico's National Institute of Cancer (INCan) were included. Tumor needle biopsy samples were obtained and subjected to microarray analysis. Patients were thus classified into one of the 6 TNBC molecular subtypes. The prognostic, clinical and pathological information of patients was obtained, and differences across molecular subtypes were sought. Out of the 55 included patients, the following subtypes were identified: 9 basal-like-1, 11 basal-like-2 (BSL2), 16 immunomodulatory (IM), 12 mesenchymal, 6 androgen receptor-like and 1 mesenchymal stem-like. Mean follow-up time was 47.1 months. The IM molecular subtype had the best overall survival (OS) (median OS was not reached). BSL2 had the worst OS (15 months). A complete pathologic response to neoadjuvant chemotherapy was obtained more often in the IM subtype (P=0.032). No significant associations were found between any of the clinical or pathological characteristics and the TNBC molecular subtypes. The results obtained from the present study should be considered when seeking to implement a clinical-molecular model for TNBC patient care, particularly in Hispanic-based populations, as they have been frequently underrepresented in clinical studies assessing TNBC molecular subtypes.

4.
Cancers (Basel) ; 13(24)2021 Dec 13.
Article in English | MEDLINE | ID: mdl-34944876

ABSTRACT

Triple-negative breast cancer (TNBC) is an aggressive and heterogeneous disease. Seven subtypes have been described based on gene expression patterns. Herein, we characterized the tumor biology and clinical behavior of the immunomodulatory (IM) subtype. METHODS: Formalin-fixed paraffin-embedded tumor samples from 68 high-risk (stage III-IV) TNBC patients were analyzed through microarrays, immunohistochemistry, and DNA sequencing. RESULTS: The IM subtype was identified in 24% of TNBC tumor samples and characterized by a higher intratumoral (intT) and stromal (strml) infiltration of FOXP3+ TILs (Treg) compared with non-IM subtypes. Further, PD-L1+ (>1%) expression was significantly higher, as well as CTLA-4+ intT and strml expression in the IM subtype. Differential expression and gene set enrichment analysis identified biological processes associated with the immune system. Pathway analysis revealed enrichment of the ß-catenin signaling pathway. The non-coding analysis led to seven Long Intergenic Non-Protein Coding RNAs (lincRNAs) (6 up-regulated and 1 down-regulated) that were associated with a favorable prognosis in the TNBC-IM subtype. The DNA sequencing highlighted two genes relevant to immune system responses: CTNNB1 (Catenin ß-1) and IDH1. CONCLUSION: the IM subtype showed a distinct immune microenvironment, as well as subtype-specific genomic alterations. Characterizing TNBC at a molecular and transcriptomic level might guide immune-based therapy in this subgroup of patients.

5.
Cancers (Basel) ; 13(11)2021 May 28.
Article in English | MEDLINE | ID: mdl-34071219

ABSTRACT

The purpose of this study was to determine the change in overall survival (OS) for patients with de novo metastatic breast cancer (dnMBC) over time. We conducted a retrospective cohort study with 1981 patients with dnMBC diagnosed between January 1995 and December 2017 at The University of Texas MD Anderson Cancer Center. OS was measured from the date of diagnosis of dnMBC. OS was compared between patients diagnosed during different time periods: 5-year periods and periods defined according to when key agents were approved for clinical use. The median OS was 3.4 years. The 5- and 10-year OS rates improved over time across both types of time periods. A subgroup analysis showed that OS improved significantly over time for the estrogen-receptor-positive/HER2-positive (ER+/HER2+) subtype and exhibited a tendency toward improvement over time for the ER-negative (ER-)/HER2+ subtype. In addition, median OS was significantly longer in patients with non-inflammatory breast cancer (p = 0.02) and patients with ER+ disease, progesterone-receptor-positive disease, HER2+ disease, lower nuclear grade, locoregional therapy, and metastasis to a single organ (all p < 0.0001). These findings showed that OS at 5 and 10 years after diagnosis in patients with dnMBC improved over time. The significant improvements in OS over time for the ER+/HER2+ subtype and the tendency toward improvement for the ER-/HER2+ subtype suggest the contribution of HER2-targeted therapy to survival.

6.
Blood Adv ; 5(9): 2412-2425, 2021 05 11.
Article in English | MEDLINE | ID: mdl-33956058

ABSTRACT

Advances in cancer genomics have revealed genomic classes of acute myeloid leukemia (AML) characterized by class-defining mutations, such as chimeric fusion genes or in genes such as NPM1, MLL, and CEBPA. These class-defining mutations frequently synergize with internal tandem duplications in FLT3 (FLT3-ITDs) to drive leukemogenesis. However, ∼20% of FLT3-ITD-positive AMLs bare no class-defining mutations, and mechanisms of leukemic transformation in these cases are unknown. To identify pathways that drive FLT3-ITD mutant AML in the absence of class-defining mutations, we performed an insertional mutagenesis (IM) screening in Flt3-ITD mice, using Sleeping Beauty transposons. All mice developed acute leukemia (predominantly AML) after a median of 73 days. Analysis of transposon insertions in 38 samples from Flt3-ITD/IM leukemic mice identified recurrent integrations at 22 loci, including Setbp1 (20/38), Ets1 (11/38), Ash1l (8/38), Notch1 (8/38), Erg (7/38), and Runx1 (5/38). Insertions at Setbp1 led exclusively to AML and activated a transcriptional program similar, but not identical, to those of NPM1-mutant and MLL-rearranged AMLs. Guide RNA targeting of Setbp1 was highly detrimental to Flt3ITD/+/Setbp1IM+, but not to Flt3ITD/+/Npm1cA/+, AMLs. Also, analysis of RNA-sequencing data from hundreds of human AMLs revealed that SETBP1 expression is significantly higher in FLT3-ITD AMLs lacking class-defining mutations. These findings propose that SETBP1 overexpression collaborates with FLT3-ITD to drive a subtype of human AML. To identify genetic vulnerabilities of these AMLs, we performed genome-wide CRISPR-Cas9 screening in Flt3ITD/+/Setbp1IM+ AMLs and identified potential therapeutic targets, including Kdm1a, Brd3, Ezh2, and Hmgcr. Our study gives new insights into epigenetic pathways that can drive AMLs lacking class-defining mutations and proposes therapeutic approaches against such cases.


Subject(s)
Leukemia, Myeloid, Acute , Acute Disease , Animals , DNA-Binding Proteins , Histone-Lysine N-Methyltransferase , Leukemia, Myeloid, Acute/genetics , Mice , Mutation , Nuclear Proteins/genetics , Nucleophosmin
7.
Breast Cancer Res Treat ; 183(3): 729-739, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32720114

ABSTRACT

PURPOSE: Combinations of endocrine therapy (ET) and targeted therapy (CDK4/6 or mTOR inhibitors) are standard of care for HR+/HER2- metastatic breast cancer (MBC). When ET is not effective, chemotherapy is commonly used. However, clinical outcomes of chemotherapy in the endocrine-resistant setting are limited. The purpose of this study was to identify predictive factors and the compare efficacies of chemotherapy agents in endocrine-resistant MBC. METHODS: We conducted a retrospective study of patients with HR+/HER2- MBC who received chemotherapy after progression on ET with or without targeted therapy at MD Anderson Cancer Center from 1999 to 2017. We collected baseline clinicopathological and all treatment data. Primary endpoint was time to treatment failure (TTF) of first-line chemotherapy for MBC. RESULTS: For the 1258 patients analyzed, mean age was 55.3 years (range 21-91). Previous treatment with targeted therapy was recorded for 390 patients (31%): 264 with CDK4/6 inhibitor, 205 with mTOR inhibitor, and 79 treated with both. The most frequent chemotherapy agents were capecitabine (48.9%) and taxanes (28.6%). After adjustment for all factors in a multivariate model, previous treatment with a CDK4/6 inhibitor had the strongest negative effect on TTF regardless of ET duration (hazard ratio [HR] 1.84; 95%CI 1.49-2.27; p < 0.001). Conversely, capecitabine had significantly longer median TTF than taxanes regardless of whether patients had prior exposure to taxanes in primary setting (6.1 vs 4.9 months; HR 0.64; 95%CI 0.55-0.75; p < 0.001). CONCLUSIONS: Previous exposure to CDK4/6 inhibitor had a negative predictive effect for the efficacy of chemotherapy. Capecitabine had the best efficacy against endocrine-resistant breast cancer.


Subject(s)
Breast Neoplasms , Adult , Aged , Aged, 80 and over , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Breast Neoplasms/drug therapy , Female , Hormones/therapeutic use , Humans , Middle Aged , Receptor, ErbB-2 , Retrospective Studies , Young Adult
8.
Front Oncol ; 9: 1404, 2019.
Article in English | MEDLINE | ID: mdl-31921661

ABSTRACT

Dysregulated metabolism is a common feature of cancer cells and is considered a hallmark of cancer. Altered tumor-metabolism confers an adaptive advantage to cancer cells to fulfill the high energetic requirements for the maintenance of high proliferation rates, similarly, reprogramming metabolism confers the ability to grow at low oxygen concentrations and to use alternative carbon sources. These phenomena result from the dysregulated expression of diverse genes, including those encoding microRNAs (miRNAs) which are involved in several metabolic and tumorigenic pathways through its post-transcriptional-regulatory activity. Further, the identification of key actionable altered miRNA has allowed to propose novel targeted therapies to modulated tumor-metabolism. In this review, we discussed the different roles of miRNAs in cancer cell metabolism and novel miRNA-based strategies designed to target the metabolic machinery in human cancer.

10.
Clin Epigenetics ; 10: 88, 2018.
Article in English | MEDLINE | ID: mdl-29983835

ABSTRACT

Triple-negative breast cancer (TNBC) has been clinically difficult to manage because of tumor aggressiveness, cellular and histological heterogeneity, and molecular mechanisms' complexity. All this in turn leads us to evaluate that tumor biological behavior is not yet fully understood. Additionally, the heterogeneity of tumor cells represents a great biomedicine challenge in terms of the complex molecular-genetical-transcriptional and epigenetical-mechanisms, which have not been fully elucidated on human solid tumors. Recently, human breast cancer, but specifically TNBC is under basic and clinical-oncology research in the discovery of new molecular biomarkers and/or therapeutic targets to improve treatment responses, as well as for seeking algorithms for patient stratification, seeking a positive impact in clinical-oncology outcomes and life quality on breast cancer patients. In this sense, important knowledge is emerging regarding several cancer molecular aberrations, including higher genetic mutational rates, LOH, CNV, chromosomal, and epigenetic alterations, as well as transcriptome aberrations in terms of the total gene-coding ribonucleic acids (RNAs), known as mRNAs, as well as non-coding RNA (ncRNA) sequences. In this regard, novel investigation fields have included microRNAs (miRNAs), as well as long ncRNAs (lncRNAs), which have been importantly related and are likely involved in the induction, promotion, progression, and/or clinical therapeutic response trackers of TNBC. Based on this, in general terms according with the five functional archetype classification, the lncRNAs may be involved in the regulation of several molecular mechanisms which include genetic expression, epigenetic, transcriptional, and/or post-transcriptional mechanisms, which are nowadays not totally understood. Here, we have reviewed the main dis-regulated and functionally non- and well-characterized lncRNAs and their likely involvement, from a molecular enrichment and mechanistic point of view, as tumor biomarkers for breast cancer and its specific histological subtype, TNBC. In reference to the abovementioned, it has been described that some lncRNA expression profiles correspond or are associated with the TNBC histological subtype, potentially granting their use for TNBC malignant progression, diagnosis, tumor clinical stage, and likely therapy. Based on this, lncRNAs have been proposed as potential biomarkers which might represent potential predictive tools in the differentiated breast carcinomas versus TNBC malignant disease. Finally, elucidation of the specific or multi-functional archetypal of lncRNAs in breast cancer and TNBC could be fundamental, as these molecular intermediary-regulator "lncRNAs" are widely involved in the genome expression, epigenome regulation, and transcriptional and post-transcriptional tumor biology, which in turn will probably represent a new prospect in clinical and/or therapeutic molecular targets for the oncological management of breast carcinomas in general and also for TNBC patients.


Subject(s)
Molecular Targeted Therapy , RNA, Long Noncoding/metabolism , Triple Negative Breast Neoplasms/diagnosis , Triple Negative Breast Neoplasms/drug therapy , Biomarkers, Tumor , Disease Progression , Epigenesis, Genetic , Female , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Humans , MicroRNAs/genetics , Prognosis , RNA, Messenger/genetics , Transcriptome/genetics
11.
Nat Genet ; 50(6): 883-894, 2018 06.
Article in English | MEDLINE | ID: mdl-29736013

ABSTRACT

The histone H3 Lys27-specific demethylase UTX (or KDM6A) is targeted by loss-of-function mutations in multiple cancers. Here, we demonstrate that UTX suppresses myeloid leukemogenesis through noncatalytic functions, a property shared with its catalytically inactive Y-chromosome paralog, UTY (or KDM6C). In keeping with this, we demonstrate concomitant loss/mutation of KDM6A (UTX) and UTY in multiple human cancers. Mechanistically, global genomic profiling showed only minor changes in H3K27me3 but significant and bidirectional alterations in H3K27ac and chromatin accessibility; a predominant loss of H3K4me1 modifications; alterations in ETS and GATA-factor binding; and altered gene expression after Utx loss. By integrating proteomic and genomic analyses, we link these changes to UTX regulation of ATP-dependent chromatin remodeling, coordination of the COMPASS complex and enhanced pioneering activity of ETS factors during evolution to AML. Collectively, our findings identify a dual role for UTX in suppressing acute myeloid leukemia via repression of oncogenic ETS and upregulation of tumor-suppressive GATA programs.


Subject(s)
Chromatin/genetics , Enhancer Elements, Genetic , GATA Transcription Factors/genetics , Histone Demethylases/genetics , Leukemia, Myeloid/genetics , Proto-Oncogene Proteins c-ets/genetics , Animals , Cell Line , Chromatin Assembly and Disassembly/genetics , Gene Expression Regulation, Leukemic , HEK293 Cells , Histones/genetics , Humans , Mice , Mice, Inbred C57BL , Proteomics/methods , Regulatory Sequences, Nucleic Acid/genetics , Transcriptional Activation
12.
Respir Res ; 17: 42, 2016 Apr 20.
Article in English | MEDLINE | ID: mdl-27098372

ABSTRACT

BACKGROUND: Tobacco-smoke is the major etiological factor related to lung cancer. However, other important factor is chronic wood smoke exposure (WSE). Approximately 30 % of lung cancer patients in Mexico have a history of WSE, and present different clinical, pathological and molecular characteristics compared to tobacco related lung cancer, including differences in mutational profiles. There are several molecular alterations identified in WSE associated lung cancer, however most studies have focused on the analysis of changes in several pathogenesis related proteins. METHODS: Our group evaluated gene expression profiles of primary lung adenocarcinoma, from patients with history of WSE or tobacco exposure. Differential expression between these two groups were studied through gene expression microarrays. RESULTS: Results of the gene expression profiling revealed 57 statistically significant genes (p < 0.01). The associated biological functional pathways included: lipid metabolism, biochemistry of small molecules, molecular transport, cell morphology, function and maintenance. A highlight of our analysis is that three of the main functional networks represent 37 differentially expressed genes out of the 57 found. These hubs are related with ubiquitin C, GABA(A) receptor-associated like protein; and the PI3K/AKT and MEK/ERK signaling pathways. CONCLUSION: Our results reflect the intrinsic biology that sustains the development of adenocarcinoma related to WSE and show that there is a different gene expression profile of WSE associated lung adenocarcinoma compared to tobacco exposure, suggesting that they arise through different carcinogenic mechanisms, which may explain the clinical and mutation profile divergences between both lung adenocarcinomas.


Subject(s)
Adenocarcinoma/metabolism , Lung Neoplasms/metabolism , Neoplasm Proteins/metabolism , Soot/poisoning , Tobacco Smoke Pollution/adverse effects , Wood/adverse effects , Adenocarcinoma/etiology , Environmental Exposure , Female , Gene Expression Regulation, Neoplastic , Humans , Lung Neoplasms/etiology , Male , Mexico/epidemiology , Middle Aged , Prevalence , Risk Factors , Transcriptome
13.
Stem Cell Reports ; 1(4): 293-306, 2013.
Article in English | MEDLINE | ID: mdl-24319665

ABSTRACT

Human pluripotent stem cells (hPSCs) could provide an infinite source of clinically relevant cells with potential applications in regenerative medicine. However, hPSC lines vary in their capacity to generate specialized cells, and the development of universal protocols for the production of tissue-specific cells remains a major challenge. Here, we have addressed this limitation for the endodermal lineage by developing a defined culture system to expand and differentiate human foregut stem cells (hFSCs) derived from hPSCs. hFSCs can self-renew while maintaining their capacity to differentiate into pancreatic and hepatic cells. Furthermore, near-homogenous populations of hFSCs can be obtained from hPSC lines which are normally refractory to endodermal differentiation. Therefore, hFSCs provide a unique approach to bypass variability between pluripotent lines in order to obtain a sustainable source of multipotent endoderm stem cells for basic studies and to produce a diversity of endodermal derivatives with a clinical value.


Subject(s)
Cell Line , Gastrula/cytology , Multipotent Stem Cells/cytology , Pluripotent Stem Cells/cytology , Biomarkers/metabolism , Cell Culture Techniques , Cell Differentiation , Humans , Multipotent Stem Cells/metabolism , Pluripotent Stem Cells/metabolism
14.
PLoS One ; 8(1): e54961, 2013.
Article in English | MEDLINE | ID: mdl-23383015

ABSTRACT

Melioidosis (Burkholderia pseudomallei infection) is a common cause of community-acquired sepsis in Northeast Thailand and northern Australia. B. pseudomallei is a soil saprophyte endemic to Southeast Asia and northern Australia. The clinical presentation of melioidosis may mimic tuberculosis (both cause chronic suppurative lesions unresponsive to conventional antibiotics and both commonly affect the lungs). The two diseases have overlapping risk profiles (e.g., diabetes, corticosteroid use), and both B. pseudomallei and Mycobacterium tuberculosis are intracellular pathogens. There are however important differences: the majority of melioidosis cases are acute, not chronic, and present with severe sepsis and a mortality rate that approaches 50% despite appropriate antimicrobial therapy. By contrast, tuberculosis is characteristically a chronic illness with mortality <2% with appropriate antimicrobial chemotherapy. We examined the gene expression profiles of total peripheral leukocytes in two cohorts of patients, one with acute melioidosis (30 patients and 30 controls) and another with tuberculosis (20 patients and 24 controls). Interferon-mediated responses dominate the host response to both infections, and both type 1 and type 2 interferon responses are important. An 86-gene signature previously thought to be specific for tuberculosis is also found in melioidosis. We conclude that the host responses to melioidosis and to tuberculosis are similar: both are dominated by interferon-signalling pathways and this similarity means gene expression signatures from whole blood do not distinguish between these two diseases.


Subject(s)
Interferons/metabolism , Melioidosis/genetics , Melioidosis/pathology , Signal Transduction/genetics , Tuberculosis, Pulmonary/genetics , Tuberculosis, Pulmonary/pathology , Acute Disease , Adolescent , Adult , Aged , Cohort Studies , Female , Gene Expression Profiling , Genomics , Humans , Leukocytes/immunology , Leukocytes/metabolism , Male , Melioidosis/blood , Melioidosis/immunology , Middle Aged , Signal Transduction/immunology , Tuberculosis, Pulmonary/blood , Tuberculosis, Pulmonary/immunology , Young Adult
15.
PLoS One ; 8(12): e84567, 2013.
Article in English | MEDLINE | ID: mdl-24386394

ABSTRACT

Proteins exhibiting hyper-variable sequences within a bacterial pathogen may be associated with host adaptation. Several lineages of the monophyletic pathogen Salmonella enterica serovar Typhi (S. Typhi) have accumulated non-synonymous mutations in the putative two-component regulatory system yehUT. Consequently we evaluated the function of yehUT in S. Typhi BRD948 and S. Typhimurium ST4/74. Transcriptome analysis identified the cstA gene, encoding a carbon starvation protein as the predominantly yehUT regulated gene in both these serovars. Deletion of yehUT had no detectable effect on the ability of these mutant Salmonella to invade cultured epithelial cells (S. Typhi and S. Typhimurium) or induce colitis in a murine model (S. Typhimurium only). Growth, metabolic and antimicrobial susceptibility tests identified no obvious influences of yehUT on these phenotypes.


Subject(s)
Adaptation, Physiological/physiology , Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial/physiology , Salmonella typhi/metabolism , Salmonella typhimurium/metabolism , Bacterial Proteins/genetics , Base Sequence , Molecular Sequence Data , Salmonella typhi/genetics , Salmonella typhimurium/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...