Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
1.
Eur J Hum Genet ; 31(7): 834-840, 2023 07.
Article in English | MEDLINE | ID: mdl-37173411

ABSTRACT

DFNA68 is a rare subtype of autosomal dominant nonsyndromic hearing impairment caused by heterozygous alterations in the HOMER2 gene. To date, only 5 pathogenic or likely pathogenic coding variants, including two missense substitutions (c.188 C > T and c.587 G > C), a single base pair duplication (c.840dupC) and two short deletions (c.592_597delACCACA and c.832_836delCCTCA) have been described in 5 families. In this study, we report a novel HOMER2 variation, identified by massively parallel sequencing, in a Sicilian family suffering from progressive dominant hearing loss over 3 generations. This novel alteration is a nonstop substitution (c.1064 A > G) that converts the translational termination codon (TAG) of the gene into a tryptophan codon (TGG) and is predicted to extend the HOMER2 protein by 10 amino acids. RNA analyses from the proband suggested that HOMER2 transcripts carrying the nonstop variant escaped the non-stop decay pathway. Finally, in vivo studies using a zebrafish animal model and behavioral tests clearly established the deleterious impact of this novel HOMER2 alteration on hearing function. This study identifies the fourth causal variation responsible for DFNA68 and describes a simple in vivo approach to assess the pathogenicity of candidate HOMER2 variants.


Subject(s)
Deafness , Hearing Loss, Sensorineural , Hearing Loss , Animals , Codon, Terminator , Deafness/genetics , Hearing Loss/genetics , Hearing Loss, Sensorineural/genetics , Mutation , Pedigree , Zebrafish/genetics
2.
Int J Mol Sci ; 24(8)2023 Apr 15.
Article in English | MEDLINE | ID: mdl-37108493

ABSTRACT

The transition from targeted to exome or genome sequencing in clinical contexts requires quality standards, such as targeted sequencing, in order to be fully adopted. However, no clear recommendations or methodology have emerged for evaluating this technological evolution. We developed a structured method based on four run-specific sequencing metrics and seven sample-specific sequencing metrics for evaluating the performance of exome sequencing strategies to replace targeted strategies. The indicators include quality metrics and coverage performance on gene panels and OMIM morbid genes. We applied this general strategy to three different exome kits and compared them with a myopathy-targeted sequencing method. After having achieved 80 million reads, all-tested exome kits generated data suitable for clinical diagnosis. However, significant differences in the coverage and PCR duplicates were observed between the kits. These are two main criteria to consider for the initial implementation with high-quality assurance. This study aims to assist molecular diagnostic laboratories in adopting and evaluating exome sequencing kits in a diagnostic context compared to the strategy used previously. A similar strategy could be used to implement whole-genome sequencing for diagnostic purposes.


Subject(s)
High-Throughput Nucleotide Sequencing , Laboratories, Clinical , Exome Sequencing , High-Throughput Nucleotide Sequencing/methods , Whole Genome Sequencing , Base Sequence , Sequence Analysis, DNA/methods
3.
Hum Genomics ; 17(1): 7, 2023 02 10.
Article in English | MEDLINE | ID: mdl-36765386

ABSTRACT

SpliceAI is an open-source deep learning splicing prediction algorithm that has demonstrated in the past few years its high ability to predict splicing defects caused by DNA variations. However, its outputs present several drawbacks: (1) although the numerical values are very convenient for batch filtering, their precise interpretation can be difficult, (2) the outputs are delta scores which can sometimes mask a severe consequence, and (3) complex delins are most often not handled. We present here SpliceAI-visual, a free online tool based on the SpliceAI algorithm, and show how it complements the traditional SpliceAI analysis. First, SpliceAI-visual manipulates raw scores and not delta scores, as the latter can be misleading in certain circumstances. Second, the outcome of SpliceAI-visual is user-friendly thanks to the graphical presentation. Third, SpliceAI-visual is currently one of the only SpliceAI-derived implementations able to annotate complex variants (e.g., complex delins). We report here the benefits of using SpliceAI-visual and demonstrate its relevance in the assessment/modulation of the PVS1 classification criteria. We also show how SpliceAI-visual can elucidate several complex splicing defects taken from the literature but also from unpublished cases. SpliceAI-visual is available as a Google Colab notebook and has also been fully integrated in a free online variant interpretation tool, MobiDetails ( https://mobidetails.iurc.montp.inserm.fr/MD ).


Subject(s)
Algorithms , RNA Splicing , Humans , RNA Splicing/genetics
4.
Brain ; 145(11): 3770-3775, 2022 11 21.
Article in English | MEDLINE | ID: mdl-35883251

ABSTRACT

Cerebellar ataxia, neuropathy and vestibular areflexia syndrome (CANVAS) is an inherited late-onset neurological disease caused by bi-allelic AAGGG pentanucleotide expansions within intron 2 of RFC1. Despite extensive studies, the pathophysiological mechanism of these intronic expansions remains elusive. We screened by clinical exome sequencing two unrelated patients presenting with late-onset ataxia. A repeat-primer polymerase chain reaction was used for RFC1 AAGGG intronic expansion identification. RFC1 mRNA expression was assessed by quantitative reverse transcription-polymerase chain reaction. We identified the first two CANVAS affected patients who are compound heterozygous for RFC1 truncating variants (p.Arg388* and c.575delA, respectively) and a pathological AAGGG expansion. RFC1 expression studies in whole blood showed a significant reduction of RFC1 mRNA for both patients compared to three patients with bi-allelic RFC1 expansions. In conclusion, this observation provides clues that suggest bi-allelic RFC1 conditional loss-of-function as the cause of the disease.


Subject(s)
Bilateral Vestibulopathy , Cerebellar Ataxia , Peripheral Nervous System Diseases , Replication Protein C , Humans , Bilateral Vestibulopathy/complications , Cerebellar Ataxia/genetics , Peripheral Nervous System Diseases/complications , Peripheral Nervous System Diseases/genetics , Reflex, Abnormal , RNA, Messenger/genetics , Syndrome , Replication Protein C/genetics
5.
Diagnostics (Basel) ; 12(1)2022 Jan 15.
Article in English | MEDLINE | ID: mdl-35054374

ABSTRACT

GSDME, also known as DFNA5, is a gene implicated in autosomal dominant nonsyndromic hearing loss (ADNSHL), affecting, at first, the high frequencies with a subsequent progression over all frequencies. To date, all the GSDME pathogenic variants associated with deafness lead to skipping of exon 8. In two families with apparent ADNSHL, massively parallel sequencing (MPS) integrating a coverage-based method for detection of copy number variations (CNVs) was applied, and it identified the first two causal GSDME structural variants affecting exon 8. The deleterious impact of the c.991-60_1095del variant, which includes the acceptor splice site sequence of exon 8, was confirmed by the study of the proband's transcripts. The second mutational event is a complex rearrangement that deletes almost all of the exon 8 sequence. This study increases the mutational spectrum of the GSDME gene and highlights the crucial importance of MPS data for the detection of GSDME exon 8 deletions, even though the identification of a causal single-exon CNV by MPS analysis is still challenging.

6.
Eur J Hum Genet ; 30(1): 34-41, 2022 01.
Article in English | MEDLINE | ID: mdl-34857896

ABSTRACT

Alterations of the transmembrane channel-like 1 gene (TMC1) are involved in autosomal recessive and dominant nonsyndromic hearing loss (NSHL). To date, up to 117 causal variants including substitutions, insertions and splice variants have been reported in families from different populations. In a patient suffering from severe prelingual NSHL, we identified, in the homozygous state, the previously considered likely benign synonymous c.627C>T; p.(Leu209=) substitution. We used in silico tools predicting variant-induced alterations of splicing regulatory elements (SREs) and pinpointed this transition as a candidate splice-altering variation. Functional splicing analysis, using a minigene assay, confirmed that the variant altered a critical regulatory sequence which is essential for the exon 11 inclusion in the TMC1 transcripts. This result was reinforced by the analysis of orthologous TMC1 mammalian sequences for which the deleterious effect on the mRNA processing of a native thymidine was always counteracted by the presence of a stronger donor splice site or additional enhancer motifs. This study demonstrates, for the first time, the pathogenicity of the c.627C>T alteration leading to its reclassification as a causal variant impacting SREs and highlights the major importance of exhaustive studies to accurately evaluate the pathogenicity of a variant, regardless of the variation type.


Subject(s)
Hearing Loss, Sensorineural/genetics , Membrane Proteins/genetics , RNA Splicing , Child , Genes, Recessive , HEK293 Cells , Hearing Loss, Sensorineural/pathology , Humans , Male , Membrane Proteins/metabolism , Point Mutation , RNA Splice Sites
7.
Int J Mol Sci ; 22(24)2021 Dec 10.
Article in English | MEDLINE | ID: mdl-34948090

ABSTRACT

Usher syndrome is an autosomal recessive disorder characterized by congenital hearing loss combined with retinitis pigmentosa, and in some cases, vestibular areflexia. Three clinical subtypes are distinguished, and MYO7A and USH2A represent the two major causal genes involved in Usher type I, the most severe form, and type II, the most frequent form, respectively. Massively parallel sequencing was performed on a cohort of patients in the context of a molecular diagnosis to confirm clinical suspicion of Usher syndrome. We report here 231 pathogenic MYO7A and USH2A genotypes identified in 73 Usher type I and 158 Usher type II patients. Furthermore, we present the ACMG classification of the variants, which comprise all types. Among them, 68 have not been previously reported in the literature, including 12 missense and 16 splice variants. We also report a new deep intronic variant in USH2A. Despite the important number of molecular studies published on these two genes, we show that during the course of routine genetic diagnosis, undescribed variants continue to be identified at a high rate. This is particularly pertinent in the current era, where therapeutic strategies based on DNA or RNA technologies are being developed.


Subject(s)
Extracellular Matrix Proteins/genetics , Genotype , Mutation, Missense , Myosin VIIa/genetics , RNA Splice Sites , Usher Syndromes , Adult , Female , France , Humans , Male , Usher Syndromes/classification , Usher Syndromes/genetics
8.
Diagnostics (Basel) ; 11(9)2021 Sep 07.
Article in English | MEDLINE | ID: mdl-34573976

ABSTRACT

We describe a family with both hearing loss (HL) and thrombocytopenia, caused by pathogenic variants in three genes. The proband was a child with neonatal thrombocytopenia, childhood-onset HL, hyper-laxity and severe myopia. The child's mother (and some of her relatives) presented with moderate thrombocytopenia and adulthood-onset HL. The child's father (and some of his relatives) presented with adult-onset HL. An HL panel analysis, completed by whole exome sequencing, was performed in this complex family. We identified three pathogenic variants in three different genes: MYH9, MYO7A and ACTG1. The thrombocytopenia in the child and her mother is explained by the MYH9 variant. The post-lingual HL in the paternal branch is explained by the MYO7A variant, absent in the proband, while the congenital HL of the child is explained by a de novo ACTG1 variant. This family, in which HL segregates, illustrates that multiple genetic conditions coexist in individuals and make patient care more complex than expected.

9.
Genet Med ; 23(11): 2160-2170, 2021 11.
Article in English | MEDLINE | ID: mdl-34234304

ABSTRACT

PURPOSE: Diagnosis of inherited ataxia and related diseases represents a real challenge given the tremendous heterogeneity and clinical overlap of the various causes. We evaluated the efficacy of molecular diagnosis of these diseases by sequencing a large cohort of undiagnosed families. METHODS: We analyzed 366 unrelated consecutive patients with undiagnosed ataxia or related disorders by clinical exome-capture sequencing. In silico analysis was performed with an in-house pipeline that combines variant ranking and copy-number variant (CNV) searches. Variants were interpreted according to American College of Medical Genetics and Genomics/Association for Molecular Pathology (ACMG/AMP) guidelines. RESULTS: We established the molecular diagnosis in 46% of the cases. We identified 35 mildly affected patients with causative variants in genes that are classically associated with severe presentations. These cases were explained by the occurrence of hypomorphic variants, but also rarely suspected mechanisms such as C-terminal truncations and translation reinitiation. CONCLUSION: A significant fraction of the clinical heterogeneity and phenotypic overlap is explained by hypomorphic variants that are difficult to identify and not readily predicted. The hypomorphic C-terminal truncation and translation reinitiation mechanisms that we identified may only apply to few genes, as it relies on specific domain organization and alterations. We identified PEX10 and FASTKD2 as candidates for translation reinitiation accounting for mild disease presentation.


Subject(s)
Cerebellar Ataxia , Genomics , Cohort Studies , DNA Copy Number Variations/genetics , Humans , Peroxins , Receptors, Cytoplasmic and Nuclear , United States , Exome Sequencing
10.
J Cyst Fibros ; 20(3): 464-472, 2021 05.
Article in English | MEDLINE | ID: mdl-33341408

ABSTRACT

BACKGROUND: Minigenes and in silico prediction tools are commonly used to assess the impact on splicing of CFTR variants. Exon skipping is often neglected though it could impact the efficacy of targeted therapies. The aim of the study was to identify exon skipping associated with CFTR variants and to evaluate in silico predictions of seven freely available software. METHODS: CFTR basal exon skipping was evaluated on endogenous mRNA extracted from non-CF nasal cells and on two CFTR minigene banks. In silico tools and minigene systems were used to evaluate the impact of CFTR exonic variants on exon skipping. RESULTS: Data showed that out of 65 CFTR variants tested, 26 enhanced exon skipping and that in silico prediction efficacy was of 50%-66%. Some in silico tools presented predictions with a bias towards the occurrence of splicing events while others presented a bias towards the absence of splicing events (non-detection including true negatives and false negatives). Classification of exons depending on their basal exon skipping level increased prediction rates up to 80%. CONCLUSION: This study indicates that taking basal exon skipping into account could orientate the choice of the in silico tools to improve prediction rates. It also highlights the need to validate effects using in vitro assays or mRNA studies in patients. Eventually, it shows that variant-guided therapy should also target exon skipping associated with variants.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis/genetics , Exons , Alternative Splicing , Cells, Cultured , Humans , Nasal Mucosa/cytology , RNA Splice Sites , Sequence Deletion
11.
Eur J Hum Genet ; 29(2): 356-360, 2021 02.
Article in English | MEDLINE | ID: mdl-33161418

ABSTRACT

MobiDetails is an expert tool, online application which gathers useful data for the interpretation of DNA variants in the context of molecular diagnosis. It brings together in a single tool many sources of data, such as population genetics, various kinds of predictors, Human Genome Variation Society (HGVS) nomenclatures, curated databases, and access to various annotations. Accurate interpretation of DNA variants is crucial and can impact the patient care or have familial outcomes (prenatal diagnosis). Its importance will increase in the coming years with the expansion of the personalized medicine. MobiDetails is specifically designed to help with this task. Exonic or intronic substitutions and small insertions/deletions related to more than 18,000 human genes are easily submitted and annotated in real-time. It is a responsive website that can be accessed using mobiles or tablets during medical staff meetings. MobiDetails is based on publicly available resources, does not include any specific data on patients or phenotypes, and is freely available for academic use at https://mobidetails.iurc.montp.inserm.fr/MD/ .


Subject(s)
DNA , Databases, Genetic , Genetic Variation , Precision Medicine , Computational Biology , Genome, Human , Humans , INDEL Mutation , Phenotype , Software
13.
Brain ; 143(8): 2380-2387, 2020 08 01.
Article in English | MEDLINE | ID: mdl-32658972

ABSTRACT

The SLC12 gene family consists of SLC12A1-SLC12A9, encoding electroneutral cation-coupled chloride co-transporters. SCL12A2 has been shown to play a role in corticogenesis and therefore represents a strong candidate neurodevelopmental disorder gene. Through trio exome sequencing we identified de novo mutations in SLC12A2 in six children with neurodevelopmental disorders. All had developmental delay or intellectual disability ranging from mild to severe. Two had sensorineural deafness. We also identified SLC12A2 variants in three individuals with non-syndromic bilateral sensorineural hearing loss and vestibular areflexia. The SLC12A2 de novo mutation rate was demonstrated to be significantly elevated in the deciphering developmental disorders cohort. All tested variants were shown to reduce co-transporter function in Xenopus laevis oocytes. Analysis of SLC12A2 expression in foetal brain at 16-18 weeks post-conception revealed high expression in radial glial cells, compatible with a role in neurogenesis. Gene co-expression analysis in cells robustly expressing SLC12A2 at 16-18 weeks post-conception identified a transcriptomic programme associated with active neurogenesis. We identify SLC12A2 de novo mutations as the cause of a novel neurodevelopmental disorder and bilateral non-syndromic sensorineural hearing loss and provide further data supporting a role for this gene in human neurodevelopment.


Subject(s)
Bilateral Vestibulopathy/genetics , Hearing Loss, Sensorineural/genetics , Neurodevelopmental Disorders/genetics , Solute Carrier Family 12, Member 2/genetics , Adolescent , Adult , Child , Child, Preschool , Female , Humans , Infant , Male , Mutation , Young Adult
14.
Front Genet ; 11: 623, 2020.
Article in English | MEDLINE | ID: mdl-32714370

ABSTRACT

Usher type 1 syndrome is a rare autosomal recessive disorder involving congenital severe-to-profound hearing loss, development of vision impairment in the first decade, and severe balance difficulties. The PCDH15 gene, one of the five genes implicated in this disease, is involved in 8-20% of cases. In this study, we aimed to identify and characterize the two causal variants in a French patient with typical Usher syndrome clinical features. Massively parallel sequencing-based gene panel and screening for large rearrangements were used, which detected a single multi-exon deletion in the PCDH15 gene. As the second pathogenic event was likely localized in the unscreened regions of the gene, PCDH15 transcripts from cultured nasal cells were analyzed and revealed a loss of junction between exon 13 and exon 14. This aberration could be explained by the identification of two fusion transcripts, PCDH15-LINC00844 and BICC1-PCDH15, originating from a 4.6 Mb inversion. This complex chromosomal rearrangement could not be detected by our diagnostic approach but was instead characterized by long-read sequencing, which offers the possibility of detecting balanced structural variants (SVs). This finding extends our knowledge of the mutational spectrum of the PCDH15 gene with the first ever identification of a large causal paracentric inversion of chromosome 10 and illustrates the utility of screening balanced SVs in an exhaustive molecular diagnostic approach.

15.
Mol Ther Methods Clin Dev ; 17: 156-173, 2020 Jun 12.
Article in English | MEDLINE | ID: mdl-31909088

ABSTRACT

Inherited retinal dystrophies (IRDs) are characterized by progressive photoreceptor degeneration and vision loss. Usher syndrome (USH) is a syndromic IRD characterized by retinitis pigmentosa (RP) and hearing loss. USH is clinically and genetically heterogeneous, and the most prevalent causative gene is USH2A. USH2A mutations also account for a large number of isolated autosomal recessive RP (arRP) cases. This high prevalence is due to two recurrent USH2A mutations, c.2276G>T and c.2299delG. Due to the large size of the USH2A cDNA, gene augmentation therapy is inaccessible. However, CRISPR/Cas9-mediated genome editing is a viable alternative. We used enhanced specificity Cas9 of Streptococcus pyogenes (eSpCas9) to successfully achieve seamless correction of the two most prevalent USH2A mutations in induced pluripotent stem cells (iPSCs) of patients with USH or arRP. Our results highlight features that promote high target efficacy and specificity of eSpCas9. Consistently, we did not identify any off-target mutagenesis in the corrected iPSCs, which also retained pluripotency and genetic stability. Furthermore, analysis of USH2A expression unexpectedly identified aberrant mRNA levels associated with the c.2276G>T and c.2299delG mutations that were reverted following correction. Taken together, our efficient CRISPR/Cas9-mediated strategy for USH2A mutation correction brings hope for a potential treatment for USH and arRP patients.

16.
Hum Mutat ; 41(2): 375-386, 2020 02.
Article in English | MEDLINE | ID: mdl-31674704

ABSTRACT

Exome sequencing used for molecular diagnosis of Mendelian disorders considerably increases the number of missense variants of unclear significance, whose pathogenicity can be assessed by a variety of prediction tools. As the performance of algorithms may vary according to the datasets, complementary specific resources are needed to improve variant interpretation. As a model, we were interested in the cystic fibrosis transmembrane conductance regulator gene (CFTR) causing cystic fibrosis, in which at least 40% of missense variants are reported. Cystic fibrosis missense analysis (CYSMA) is a new web server designed for online estimation of the pathological relevance of CFTR missense variants. CYSMA generates a set of computationally derived data, ranging from evolutionary conservation to functional observations from three-dimensional structures, provides all available allelic frequencies, clinical observations, and references for functional studies. Compared to software classically used in analysis pipelines on a dataset of 141 well-characterized missense variants, CYSMA was the most efficient tool to discriminate benign missense variants, with a specificity of 85%, and very good sensitivity of 89%. These results suggest that such integrative tools could be adapted to numbers of genes involved in Mendelian disorders to improve the interpretation of missense variants identified in the context of diagnosis.


Subject(s)
Computational Biology/methods , Cystic Fibrosis/genetics , Databases, Genetic , Mutation, Missense , Web Browser , Computational Biology/standards , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Genetic Association Studies/methods , Genetic Predisposition to Disease , Humans , Models, Molecular , Molecular Sequence Annotation , Reproducibility of Results , Sequence Analysis, DNA/methods , Software , Software Design
17.
Hum Mutat ; 40(1): 31-35, 2019 01.
Article in English | MEDLINE | ID: mdl-30341801

ABSTRACT

Choroideremia is a monogenic X-linked recessive chorioretinal disease linked to pathogenic variants in the CHM gene. These variants are commonly base-pair changes, frameshifts, or large deletions. However, a few rare or unusual events comprising large duplications, a retrotransposon insertion, a pseudo-exon activation, and two c-98 promoter substitutions have also been described. Following an exhaustive molecular diagnosis, we identified and characterized three novel atypical disease-causing variants in three unrelated male patients. One is a first-ever reported Alu insertion within CHM and the other two are nucleotide substitutions, c.-90C>G and c.-108A>G, affecting highly conserved promoter positions. RNA analysis combined with western blot and functional assays of patient cells established the pathogenicity of the Alu insertion and the c.-90C>G alteration. Furthermore, luciferase reporter assays suggested a CHM transcription defect associated with the c.-90C>G and c.-108A>G variants. These findings broaden our knowledge of the mutational spectrum and the transcriptional regulation of the CHM gene.


Subject(s)
Choroideremia/genetics , Genetic Predisposition to Disease , Mutation/genetics , Alu Elements/genetics , Base Sequence , Exons/genetics , Humans , Promoter Regions, Genetic/genetics
18.
Sci Rep ; 8(1): 8234, 2018 05 29.
Article in English | MEDLINE | ID: mdl-29844446

ABSTRACT

Inherited retinal dystrophies (IRDs) are caused by mutations in over 200 genes, resulting in a range of therapeutic options. Translational read-through inducing drugs (TRIDs) offer the possibility of treating multiple IRDs regardless of the causative gene. TRIDs promote ribosomal misreading of premature stop codons, which results in the incorporation of a near-cognate amino acid to produce a full-length protein. The IRD choroideremia (CHM) is a pertinent candidate for TRID therapy, as nonsense variants cause 30% of cases. Recently, treatment of the UAA nonsense-carrying CHM zebrafish model with the TRID PTC124 corrected the underlying biochemical defect and improved retinal phenotype. To be clinically relevant, we studied PTC124 efficiency in UAA nonsense-carrying human fibroblasts and induced pluripotent stem cell-derived retinal pigment epithelium, as well as in a UAA-mutated CHM overexpression system. We showed that PTC124 treatment induces a non-significant trend for functional rescue, which could not be improved by nonsense-mediated decay inhibition. Furthermore, it does not produce a detectable CHM-encoded protein even when coupled with a proteasome inhibitor. We suggest that drug efficiency may depend upon on the target amino acid and its evolutionary conservation, and argue that patient cells should be screened in vitro prior to inclusion in a clinical trial.


Subject(s)
Choroideremia/pathology , Induced Pluripotent Stem Cells/metabolism , Oxadiazoles/pharmacology , Retinal Pigment Epithelium/metabolism , Cells, Cultured , Fibroblasts/drug effects , Humans , Retinal Pigment Epithelium/cytology
19.
J Mol Diagn ; 20(4): 465-473, 2018 07.
Article in English | MEDLINE | ID: mdl-29689380

ABSTRACT

Interpretation of next-generation sequencing constitutes the main limitation of molecular diagnostics. In diagnosing myopathies and muscular dystrophies, another issue is efficiency in predicting the pathogenicity of variants identified in large genes, especially TTN; current in silico prediction tools show limitations in predicting and ranking the numerous variants of such genes. We propose a variant-prioritization tool, the MoBiDiCprioritization algorithm (MPA). MPA is based on curated interpretation of data on previously reported variants, biological assumptions, and splice and missense predictors, and is used to prioritize all types of single-nucleotide variants. MPA was validated by comparing its sensitivity and specificity to those of dbNSFP database prediction tools, using a data set composed of DYSF, DMD, LMNA, NEB, and TTN variants extracted from expert-reviewed and ExAC databases. MPA obtained the best annotation rates for missense and splice variants. As MPA aggregates the results from several predictors, individual predictor errors are counterweighted, improving the sensitivity and specificity of missense and splice variant predictions. We propose a sequential use of MPA, beginning with the selection of variants with higher scores and followed by, in the absence of candidate pathologic variants, consideration of variants with lower scores. We provide scripts and documentation for free academic use and a validated annotation pipeline scaled for panel and exome sequencing to prioritize single-nucleotide variants from a VCF file.


Subject(s)
Algorithms , High-Throughput Nucleotide Sequencing/methods , Molecular Diagnostic Techniques/methods , Molecular Sequence Annotation/methods , Polymorphism, Single Nucleotide/genetics , Computer Simulation , Humans , Mutation, Missense/genetics , RNA Splicing/genetics
20.
Hum Mutat ; 38(10): 1297-1315, 2017 10.
Article in English | MEDLINE | ID: mdl-28603918

ABSTRACT

Most of the 2,000 variants identified in the CFTR (cystic fibrosis transmembrane regulator) gene are rare or private. Their interpretation is hampered by the lack of available data and resources, making patient care and genetic counseling challenging. We developed a patient-based database dedicated to the annotations of rare CFTR variants in the context of their cis- and trans-allelic combinations. Based on almost 30 years of experience of CFTR testing, CFTR-France (https://cftr.iurc.montp.inserm.fr/cftr) currently compiles 16,819 variant records from 4,615 individuals with cystic fibrosis (CF) or CFTR-RD (related disorders), fetuses with ultrasound bowel anomalies, newborns awaiting clinical diagnosis, and asymptomatic compound heterozygotes. For each of the 736 different variants reported in the database, patient characteristics and genetic information (other variations in cis or in trans) have been thoroughly checked by a dedicated curator. Combining updated clinical, epidemiological, in silico, or in vitro functional data helps to the interpretation of unclassified and the reassessment of misclassified variants. This comprehensive CFTR database is now an invaluable tool for diagnostic laboratories gathering information on rare variants, especially in the context of genetic counseling, prenatal and preimplantation genetic diagnosis. CFTR-France is thus highly complementary to the international database CFTR2 focused so far on the most common CF-causing alleles.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis/genetics , Databases, Genetic , Mutation/genetics , Alleles , Cystic Fibrosis/diagnosis , France , Genetic Counseling , Humans , Infant, Newborn , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL
...