Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
BMC Res Notes ; 5: 192, 2012 Apr 25.
Article in English | MEDLINE | ID: mdl-22533893

ABSTRACT

BACKGROUND: Gene duplication is a major force that contributes to the evolution of new metabolic functions in all organisms. Rhodobacter sphaeroides 2.4.1 is a bacterium that displays a wide degree of metabolic versatility and genome complexity and therefore is a fitting model for the study of gene duplications in bacteria. A comprehensive analysis of 234 duplicate gene-pairs in R. sphaeroides was performed using structural constraint and expression analysis. RESULTS: The results revealed that most gene-pairs in in-paralogs are maintained under negative selection (ω ≤ 0.3), but the strength of selection differed among in-paralog gene-pairs. Although in-paralogs located on different replicons are maintained under purifying selection, the duplicated genes distributed between the primary chromosome (CI) and the second chromosome (CII) are relatively less selectively constrained than the gene-pairs located within each chromosome. The mRNA expression patterns of duplicate gene-pairs were examined through microarray analysis of this organism grown under seven different growth conditions. Results revealed that ~62% of paralogs have similar expression patterns (cosine ≥ 0.90) over all of these growth conditions, while only ~7% of paralogs are very different in their expression patterns (cosine < 0.50). CONCLUSIONS: The overall findings of the study suggest that only a small proportion of paralogs contribute to the metabolic diversity and the evolution of novel metabolic functions in R. sphaeroides. In addition, the lack of relationships between structural constraints and gene-pair expression suggests that patterns of gene-pair expression are likely associated with conservation or divergence of gene-pair promoter regions and other coregulation mechanisms.


Subject(s)
Chromosomes, Bacterial , Gene Expression , Genes, Bacterial , Genes, Duplicate , RNA, Messenger/genetics , Rhodobacter sphaeroides/genetics , Biological Evolution , Chromosome Mapping , Gene Duplication , Gene Expression Profiling , Oligonucleotide Array Sequence Analysis , Promoter Regions, Genetic , Replicon
3.
Can J Microbiol ; 57(1): 49-61, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21217797

ABSTRACT

Many studies have sought to determine the origin and evolution of mitochondria. Although the Alphaproteobacteria are thought to be the closest relatives of the mitochondrial progenitor, there is dispute as to what its particular sister group is. Some have argued that mitochondria originated from ancestors of the order Rickettsiales, or more specifically of the Rickettsiaceae family, while others believe that ancestors of the family Rhodospirillaceae are also equally likely the progenitors. To resolve some of these disputes, sequence similarity searches and phylogenetic analyses were performed against mitochondria-related proteins in Saccharomyces cerevisiae. The 86 common matches of 5 Alphaproteobacteria (Rickettsia prowazekii, Rhodospirillum rubrum, Rhodopseudomonas palustris, Rhodobacter sphaeroides, and Ochrobactrum anthropi) to yeast mitochondrial proteins were distributed fairly evenly among the 5 species when sorted by highest identity or score. Moreover, exploratory phylogenetic analyses revealed that among these common matches, 44.19% (38) had branched most closely with O. anthropi, while only 34.88% (30) corresponded with Rickettsia prowazekii. More detailed phylogenetic analyses with additional Alphaproteobacteria and including genes from the mitochondria of Reclinomonas americana found matches of mitochondrial genes to those of members of the Rickettsiaceae, Anaplasmataceae, and Rhodospirillaceae families. The results support the idea that notable bacterial genome chimaerism has occurred en route to the formation of mitochondria.


Subject(s)
Alphaproteobacteria/classification , Alphaproteobacteria/genetics , Biological Evolution , Genome, Bacterial/genetics , Mitochondria/physiology , Mitochondrial Proteins/genetics , Phylogeny , Eukaryota/classification , Eukaryota/genetics , Mitochondria/genetics , Saccharomyces cerevisiae/classification , Saccharomyces cerevisiae/genetics
4.
Genome ; 53(9): 675-87, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20924417

ABSTRACT

Although many bacteria with two chromosomes have been sequenced, the roles of such complex genome structuring are still unclear. To uncover levels of chromosome I (CI) and chromosome II (CII) sequence divergence, Mauve 2.2.0 was used to align the CI- and CII-specific sequences of bacteria with complex genome structuring in two sets of comparisons: the first set was conducted among the CI and CII of bacterial strains of the same species, while the second set was conducted among the CI and CII of species in Alphaproteobacteria that possess two chromosomes. The analyses revealed a rapid evolution of CII-specific DNA sequences compared with CI-specific sequences in a majority of organisms. In addition, levels of protein divergence between CI-specific and CII-specific genes were determined using phylogenetic analyses and confirmed the DNA alignment findings. Analysis of synonymous and nonsynonymous substitutions revealed that the structural and functional constraints on CI and CII genes are not significantly different. Also, horizontal gene transfer estimates in selected organisms demonstrated that CII in many species has acquired higher levels of horizontally transferred segments than CI. In summary, rapid evolution of CII may perform particular roles for organisms such as aiding in adapting to specialized niches.


Subject(s)
Bacteria/genetics , Chromosomes, Bacterial/genetics , Evolution, Molecular , Genome, Bacterial , Phylogeny , Amino Acid Substitution , Base Sequence , Biological Evolution , Brucella/genetics , Burkholderia/genetics , Conserved Sequence/genetics , Contig Mapping , DNA, Bacterial/chemistry , Gene Transfer, Horizontal , Genes, Bacterial , Ochrobactrum/genetics , Paracoccus/genetics , Ralstonia/genetics , Rhizobium/genetics , Rhodobacter/genetics , Sequence Alignment , Sequence Analysis , Vibrio/genetics
5.
BMC Microbiol ; 10: 331, 2010 Dec 30.
Article in English | MEDLINE | ID: mdl-21192830

ABSTRACT

BACKGROUND: Rhodobacter sphaeroides 2.4.1 is a metabolically versatile organism that belongs to α-3 subdivision of Proteobacteria. The present study was to identify the extent, history, and role of gene duplications in R. sphaeroides 2.4.1, an organism that possesses two chromosomes. RESULTS: A protein similarity search (BLASTP) identified 1247 orfs (~29.4% of the total protein coding orfs) that are present in 2 or more copies, 37.5% (234 gene-pairs) of which exist in duplicate copies. The distribution of the duplicate gene-pairs in all Clusters of Orthologous Groups (COGs) differed significantly when compared to the COG distribution across the whole genome. Location plots revealed clusters of gene duplications that possessed the same COG classification. Phylogenetic analyses were performed to determine a tree topology predicting either a Type-A or Type-B phylogenetic relationship. A Type-A phylogenetic relationship shows that a copy of the protein-pair matches more with an ortholog from a species closely related to R. sphaeroides while a Type-B relationship predicts the highest match between both copies of the R. sphaeroides protein-pair. The results revealed that ~77% of the proteins exhibited a Type-A phylogenetic relationship demonstrating the ancient origin of these gene duplications. Additional analyses on three other strains of R. sphaeroides revealed varying levels of gene loss and retention in these strains. Also, analyses on common gene pairs among the four strains revealed that these genes experience similar functional constraints and undergo purifying selection. CONCLUSIONS: Although the results suggest that the level of gene duplication in organisms with complex genome structuring (more than one chromosome) seems to be not markedly different from that in organisms with only a single chromosome, these duplications may have aided in genome reorganization in this group of eubacteria prior to the formation of R. sphaeroides as gene duplications involved in specialized functions might have contributed to complex genomic development.


Subject(s)
Gene Duplication , Rhodobacter sphaeroides/genetics , Chromosomes, Bacterial , Evolution, Molecular , Prevalence
SELECTION OF CITATIONS
SEARCH DETAIL