Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
J Biochem Mol Toxicol ; 38(2): e23655, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38348715

ABSTRACT

Bisphenol A (BPA) is a synthetic environmental pollutant widely used in industry, as well as is an endocrine disrupting chemicals and has a toxic effects on heart tissue. The aim of this study is to reveal the cardioprotective effects of 18ß-glycyrretinic acid (GA) against BPA-induced cardiotoxicity in rats. In this study, 40 male rats were used and five different groups (each group includes eight rats) were formed. The rats were applied BPA (250 mg/kg b.w.) alone or with GA (50 and 100 mg/kg b.w.) for 14 days. Rats were killed on Day 15 and heart tissues were taken for analysis. GA treatment decreased serum lactate dehydrogenase and creatine kinase MB levels, reducing BPA-induced heart damage. GA treatment showed ameliorative effects against lipid peroxidation and oxidative stress caused by BPA by increasing the antioxidant enzyme activities (glutathione peroxidase, superoxide dismutase, and catalase) and GSH level of the heart tissue and decreasing the MDA level. In addition, GA showed antiapoptotic effect by increasing Bcl-2, procaspase-3, and -9 protein expression levels and decreasing Bax, cytochrome c, and P53 protein levels in heart tissue. As a result, it was found that GA has cardioprotective effects on heart tissue by exhibiting antioxidant and antiapoptotic effects against heart damage caused by BPA, an environmental pollutant. Thus, it was supported that GA could be a potential cardioprotective agent.


Subject(s)
Benzhydryl Compounds , Environmental Pollutants , Glycyrrhetinic Acid/analogs & derivatives , Heart Injuries , Phenols , Rats , Male , Animals , Antioxidants/pharmacology , Cardiotoxicity/drug therapy , Cardiotoxicity/etiology , Cardiotoxicity/prevention & control , Oxidative Stress , Environmental Pollutants/pharmacology
2.
Mol Biol Rep ; 49(10): 9641-9649, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36057755

ABSTRACT

BACKGROUND: Methotrexate (MT) is a broadly used chemotherapeutic drug however its clinical use is confronted with several forms of toxicities containing testicular damage. The current study assessed the ameliorative effects of morin on MT-induced testicular damage with the investigation of its mechanism and the potential involvement of oxidative stress, inflammation, apoptosis and endoplasmic reticulum stress in such protection. METHODS: The animals were divided into 5 distinct groups (7 rats in each group). Group 1 was control group, group 2 received MT-only (20 mg/kg bw), group 3 received orally morin-only (100 mg/kg bw), group 4 received MT (20 mg/kg bw) + morin (50 mg/kg bw) and group 5 received MT (20 mg/kg bw) + morin (100 mg/kg). In this study, morin was administered orally for 10 days, while MT was administered intraperitoneally on the 5th day. RESULTS: MT intoxication was linked with augmented MDA while decreased GSH levels, the enzyme activities of glutathione peroxidase, superoxide dismutase, and catalase and mRNA levels of HO-1 and Nrf2 in the testis tissues. MT injection caused inflammation in the testicular tissue via up-regulation of MAPK14, NFκB, TNF-α and IL-1ß. MT application also caused apoptosis and endoplasmic reticulum stress in the testis tissue via increasing mRNA transcript levels of Bax, caspase-3, PERK, IRE1, ATF-6, GRP78 and down-regulation of Bcl-2. CONCLUSION: Treatment with morin at a dose of 50 and 100 mg/kg considerably mitigated oxidative stress, inflammation, apoptosis and endoplasmic reticulum stress in the testicular tissue indicating that testicular damage related to MT toxicity could be modulated by morin administration.


Subject(s)
Mitogen-Activated Protein Kinase 14 , Testis , Activating Transcription Factor 6 , Animals , Antioxidants/metabolism , Caspase 3/metabolism , Catalase/metabolism , Endoplasmic Reticulum Chaperone BiP , Flavones , Glutathione Peroxidase/metabolism , Inflammation/metabolism , Male , Methotrexate/pharmacology , NF-E2-Related Factor 2/metabolism , Oxidative Stress , Proto-Oncogene Proteins c-bcl-2/metabolism , RNA, Messenger/metabolism , Rats , Signal Transduction , Superoxide Dismutase/metabolism , Testis/metabolism , Tumor Necrosis Factor-alpha/metabolism , bcl-2-Associated X Protein/genetics , bcl-2-Associated X Protein/metabolism
3.
Neurotoxicology ; 90: 197-204, 2022 05.
Article in English | MEDLINE | ID: mdl-35413380

ABSTRACT

Fluoride is an element with toxic properties and has been proven to have some adverse effects on many soft tissues, including brain tissue. This study aims to evaluate the protective effects of hesperidin on sodium fluoride (NaF)-induced neurotoxicity in rats by biochemical and molecular methods. The animals were randomly divided into five groups of seven rats each as Control, hesperidin, NaF (600 ppm), NaF + hesperidin (100 mg/kg, b.w.), and NaF + hesperidin (200 mg/kg, b.w.), respectively; orally for two weeks. Hesperidin reduced lipid peroxidation and increased activities of SOD, CAT and GPx and levels of GSH in NaF-induced brain tissue. Hesperidin also showed anti-inflammatory and anti-autophagic effects by decreasing levels of NF-κB, IL-1B, TNF-α, Beclin-1, LC3A, and LC3B in NaF-induced brain tissue. Moreover, hesperidin was able to down-regulate the mRNA transcript levels of apoptosis and endoplasmic reticulum stress markers such as caspase-3, Bax, Bcl-2, PERK, IRE1, ATF6, and GRP78 in NaF-induced neurotoxicity. Hesperidin also reduced the adverse effects caused by NaF by modulating the PI3K/Akt/mTOR signaling pathway. These results demonstrate that hesperidin exhibits neuroprotective effects against NaF-induced neurotoxicity in rats by ameliorating inflammation, apoptosis, autophagy, and endoplasmic reticulum stress.


Subject(s)
Hesperidin , Neurotoxicity Syndromes , Animals , Apoptosis , Autophagy , Endoplasmic Reticulum Stress , Hesperidin/pharmacology , Neuroinflammatory Diseases , Neurotoxicity Syndromes/etiology , Neurotoxicity Syndromes/prevention & control , Oxidative Stress , Phosphatidylinositol 3-Kinases , Rats , Sodium Fluoride/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...