Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
J Med Chem ; 59(10): 4926-47, 2016 05 26.
Article in English | MEDLINE | ID: mdl-27077528

ABSTRACT

Transient receptor potential vanilloid 3 (TRPV3) is a Ca(2+)- and Na(+)-permeable channel with a unique expression pattern. TRPV3 is found in both neuronal and non-neuronal tissues, including dorsal root ganglia, spinal cord, and keratinocytes. Recent studies suggest that TRPV3 may play a role in inflammation, pain sensation, and skin disorders. TRPV3 studies have been challenging, in part due to a lack of research tools such as selective antagonists. Herein, we provide the first detailed report on the development of potent and selective TRPV3 antagonists featuring a pyridinyl methanol moiety. Systematic optimization of pharmacological, physicochemical, and ADME properties of original lead 5a resulted in identification of a novel and selective TRPV3 antagonist 74a, which demonstrated a favorable preclinical profile in two different models of neuropathic pain as well as in a reserpine model of central pain.


Subject(s)
Cyclobutanes/chemical synthesis , Cyclobutanes/pharmacology , Pyridines/chemical synthesis , Pyridines/pharmacology , TRPV Cation Channels/antagonists & inhibitors , Calcium/metabolism , Cyclobutanes/chemistry , Dose-Response Relationship, Drug , HEK293 Cells , Humans , Molecular Conformation , Pyridines/chemistry , Structure-Activity Relationship , TRPV Cation Channels/metabolism
2.
J Med Chem ; 57(17): 7412-24, 2014 Sep 11.
Article in English | MEDLINE | ID: mdl-25100568

ABSTRACT

The synthesis and characterization of a series of selective, orally bioavailable 1-(chroman-4-yl)urea TRPV1 antagonists is described. Whereas first-generation antagonists that inhibit all modes of TRPV1 activation can elicit hyperthermia, the compounds disclosed herein do not elevate core body temperature in preclinical models and only partially block acid activation of TRPV1. Advancing the SAR of this series led to the eventual identification of (R)-1-(7-chloro-2,2-bis(fluoromethyl)chroman-4-yl)-3-(3-methylisoquinolin-5-yl)urea (A-1165442, 52), an analogue that possesses excellent pharmacological selectivity, has a favorable pharmacokinetic profile, and demonstrates good efficacy against osteoarthritis pain in rodents.


Subject(s)
Analgesics/chemistry , Body Temperature/drug effects , TRPV Cation Channels/antagonists & inhibitors , Urea/chemistry , Analgesics/pharmacokinetics , Analgesics/pharmacology , Animals , Area Under Curve , Body Temperature/physiology , Dogs , Dose-Response Relationship, Drug , Drug Discovery , HEK293 Cells , Humans , Isoquinolines/chemistry , Isoquinolines/pharmacokinetics , Isoquinolines/pharmacology , Metabolic Clearance Rate , Models, Chemical , Molecular Structure , Rats , Structure-Activity Relationship , TRPV Cation Channels/chemistry , TRPV Cation Channels/metabolism , Urea/analogs & derivatives , Urea/pharmacokinetics , Urea/pharmacology
3.
Bioorg Med Chem Lett ; 21(5): 1338-41, 2011 Mar 01.
Article in English | MEDLINE | ID: mdl-21315587

ABSTRACT

Novel chroman and tetrahydroquinoline ureas were synthesized and evaluated for their activity as TRPV1 antagonists. It was found that aryl substituents on the 7- or 8-position of both bicyclic scaffolds imparted the best in vitro potency at TRPV1. The most potent chroman ureas were assessed in chronic and acute pain models, and compounds with the ability to cross the blood-brain barrier were shown to be highly efficacious. The tetrahydroquinoline ureas were found to be potent CYP3A4 inhibitors, but replacement of bulky substituents at the nitrogen atom of the tetrahydroisoquinoline moiety with small groups such as methyl can minimize the inhibition.


Subject(s)
Chromans , Quinolines , TRPV Cation Channels/antagonists & inhibitors , Urea/pharmacology , Chromans/chemical synthesis , Chromans/chemistry , Chromans/pharmacology , Humans , Inhibitory Concentration 50 , Molecular Structure , Quinolines/chemistry , Urea/chemical synthesis , Urea/chemistry
4.
J Pharmacol Exp Ther ; 326(3): 879-88, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18515644

ABSTRACT

The transient receptor potential vanilloid (TRPV) 1 receptor, a nonselective cation channel expressed on peripheral sensory neurons and in the central nervous system, plays a key role in pain. TRPV1 receptor antagonism is a promising approach for pain management. In this report, we describe the pharmacological and functional characteristics of a structurally novel TRPV1 antagonist, (R)-(5-tert-butyl-2,3-dihydro-1H-inden-1-yl)-3-(1H-indazol-4-yl)-urea (ABT-102), which has entered clinical trials. At the recombinant human TRPV1 receptor ABT-102 potently (IC(50) = 5-7 nM) inhibits agonist (capsaicin, N-arachidonyl dopamine, anandamide, and proton)-evoked increases in intracellular Ca(2+) levels. ABT-102 also potently (IC(50) = 1-16 nM) inhibits capsaicin-evoked currents in rat dorsal root ganglion (DRG) neurons and currents evoked through activation of recombinant rat TRPV1 currents by capsaicin, protons, or heat. ABT-102 is a competitive antagonist (pA(2) = 8.344) of capsaicin-evoked increased intracellular Ca(2+) and shows high selectivity for blocking TRPV1 receptors over other TRP receptors and a range of other receptors, ion channels, and transporters. In functional studies, ABT-102 blocks capsaicin-evoked calcitonin gene-related peptide release from rat DRG neurons. Intraplantar administration of ABT-102 blocks heat-evoked firing of wide dynamic range and nociceptive-specific neurons in the spinal cord dorsal horn of the rat. This effect is enhanced in a rat model of inflammatory pain induced by administration of complete Freund's adjuvant. Therefore, ABT-102 potently blocks multiple modes of TRPV1 receptor activation and effectively attenuates downstream consequences of receptor activity. ABT-102 is a novel and selective TRPV1 antagonist with pharmacological and functional properties that support its advancement into clinical studies.


Subject(s)
Action Potentials/physiology , Hot Temperature , Indazoles/pharmacology , Posterior Horn Cells/metabolism , TRPV Cation Channels/antagonists & inhibitors , TRPV Cation Channels/metabolism , Urea/analogs & derivatives , Action Potentials/drug effects , Animals , Cell Line , Cells, Cultured , Dose-Response Relationship, Drug , Humans , Indazoles/chemistry , Male , Posterior Horn Cells/drug effects , Rats , Rats, Sprague-Dawley , Urea/chemistry , Urea/pharmacology
5.
J Med Chem ; 51(3): 392-5, 2008 Feb 14.
Article in English | MEDLINE | ID: mdl-18183945

ABSTRACT

Vanilloid receptor TRPV1 is a cation channel that can be activated by a wide range of noxious stimuli, including capsaicin, acid, and heat. Blockade of TRPV1 activation by selective antagonists is under investigation by several pharmaceutical companies in an effort to identify novel agents for pain management. Here we report that replacement of substituted benzyl groups by an indan rigid moiety in a previously described N-indazole- N'-benzyl urea series led to a number of TRPV1 antagonists with significantly increased in vitro potency and enhanced drug-like properties. Extensive evaluation of pharmacological, pharmacokinetic, and toxicological properties of synthesized analogs resulted in identification of ( R)-7 ( ABT-102). Both the analgesic activity and drug-like properties of ( R)-7 support its advancement into clinical pain trials.


Subject(s)
Analgesics/chemical synthesis , Indazoles/chemical synthesis , Indenes/chemical synthesis , TRPV Cation Channels/antagonists & inhibitors , Urea/analogs & derivatives , Urea/chemical synthesis , Administration, Oral , Analgesics/pharmacokinetics , Analgesics/pharmacology , Animals , Biological Availability , Dogs , Haplorhini , Humans , In Vitro Techniques , Indazoles/pharmacokinetics , Indazoles/pharmacology , Indenes/pharmacokinetics , Indenes/pharmacology , Microsomes, Liver/metabolism , Pain/drug therapy , Pain/etiology , Rats , Stereoisomerism , Structure-Activity Relationship , Urea/pharmacokinetics , Urea/pharmacology
6.
J Med Chem ; 50(15): 3651-60, 2007 Jul 26.
Article in English | MEDLINE | ID: mdl-17583335

ABSTRACT

The synthesis and structure-activity relationship of 1-(aryl)-3-(4-(amino)benzyl)urea transient receptor potential vanilloid 1 (TRPV1) antagonists are described. A variety of cyclic amine substituents are well tolerated at the 4-position of the benzyl group on compounds containing either an isoquinoline or indazole heterocyclic core. These compounds are potent antagonists of capsaicin activation of the TRPV1 receptor in vitro. Analogues, such as compound 45, have been identified that have good in vivo activity in animal models of pain. Further optimization of 45 resulted in compound 58 with substantially improved microsome stability and oral bioavailability, as well as in vivo activity.


Subject(s)
Analgesics/chemical synthesis , Indazoles/chemical synthesis , Phenylurea Compounds/chemical synthesis , TRPV Cation Channels/antagonists & inhibitors , Urea/analogs & derivatives , Administration, Oral , Analgesics/pharmacokinetics , Analgesics/pharmacology , Animals , Biological Availability , Dogs , Drug Stability , Humans , In Vitro Techniques , Indazoles/pharmacokinetics , Indazoles/pharmacology , Isoquinolines/chemical synthesis , Isoquinolines/pharmacokinetics , Isoquinolines/pharmacology , Microsomes, Liver/metabolism , Phenylurea Compounds/pharmacokinetics , Phenylurea Compounds/pharmacology , Rats , Structure-Activity Relationship , Urea/chemical synthesis , Urea/pharmacokinetics , Urea/pharmacology
7.
Bioorg Med Chem Lett ; 17(14): 3894-9, 2007 Jul 15.
Article in English | MEDLINE | ID: mdl-17507218

ABSTRACT

SAR studies for N-aryl-N'-benzyl urea class of TRPV1 antagonists have been extended to cover alpha-benzyl alkylation. Alkylated compounds showed weaker in vitro potencies in blocking capsaicin activation of TRPV1 receptor, but possessed improved pharmacokinetic properties. Further structural manipulations that included replacement of isoquinoline core with indazole and isolation of single enantiomer led to TRPV1 antagonists like (R)-16a with superior pharmacokinetic properties and greater potency in animal model of inflammatory pain.


Subject(s)
Analgesics/pharmacology , Inflammation/drug therapy , Models, Biological , Pain/drug therapy , TRPV Cation Channels/antagonists & inhibitors , Urea/pharmacology , Analgesics/pharmacokinetics , Analgesics/therapeutic use , Animals , Methylation , Rats , Urea/pharmacokinetics , Urea/therapeutic use
8.
Bioorg Med Chem ; 14(14): 4740-9, 2006 Jul 15.
Article in English | MEDLINE | ID: mdl-16621571

ABSTRACT

Novel 5,6-fused heteroaromatic ureas were synthesized and evaluated for their activity as TRPV1 antagonists. It was found that 4-aminoindoles and indazoles are the preferential cores for the attachment of ureas. Bulky electron-withdrawing groups in the para-position of the aromatic ring of the urea substituents imparted the best in vitro potency at TRPV1. The most potent derivatives were assessed in in vivo inflammatory and neuropathic pain models. Compound 46, containing the indazole core and a 3,4-dichlorophenyl group appended to it via a urea linker, demonstrated in vivo analgesic activity upon oral administration. This derivative also showed selectivity versus other receptors in the CEREP screen and exhibited acceptable cardiovascular safety at levels exceeding the therapeutic dose.


Subject(s)
TRPV Cation Channels/antagonists & inhibitors , Urea/analogs & derivatives , Animals , In Vitro Techniques , Kinetics , Male , Mice , Motor Activity/drug effects , Pain Measurement , Rats , Rats, Sprague-Dawley , Structure-Activity Relationship , TRPV Cation Channels/metabolism , Urea/chemical synthesis , Urea/chemistry , Urea/pharmacology
9.
Bioorg Med Chem Lett ; 15(11): 2803-7, 2005 Jun 02.
Article in English | MEDLINE | ID: mdl-15911258

ABSTRACT

The synthesis and structure-activity relationship of a series of 6,7-disubstituted 4-aminopyrido[2,3-d]pyrimidines as novel non-nucleoside adenosine kinase inhibitors is described. A variety of substituents, primarily aryl, at the C6 and C7 positions of the pyridopyrimidine core were found to yield analogues that are potent inhibitors of adenosine kinase. In contrast to the 5,7-disubstituted and 5,6,7-trisubstituted pyridopyrimidine series, these analogues exhibited only modest potency to inhibit AK in intact cells.


Subject(s)
Adenosine Kinase/antagonists & inhibitors , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacology , Pyrimidines/chemical synthesis , Pyrimidines/pharmacology , Drug Evaluation, Preclinical , Enzyme Inhibitors/chemistry , Pyrimidines/chemistry
10.
Bioorg Med Chem ; 13(11): 3705-20, 2005 Jun 01.
Article in English | MEDLINE | ID: mdl-15863000

ABSTRACT

4-Amino-5,7-disubstituted pyridopyrimidines are potent, non-nucleoside inhibitors of adenosine kinase (AK). We recently identified a potent, orally efficacious analog, 4 containing a 7-pyridylmorpholine substituted ring system as the key structural element of this template. In this report, we disclose the pharmacologic effects of five- and six-membered heterocyclic ring replacements for the pyridine ring in 4. These replacements were found to have interesting effects on in vivo efficacy and genotoxicity as well as in vitro potency. We discovered that the nitrogen in the heterocyclic ring at C(7) is important for the modulation of mutagenic side effects (Ames assay).


Subject(s)
Adenosine Kinase/antagonists & inhibitors , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Morpholines/pharmacology , Pyrimidines/pharmacology , Animals , Cell Line , Magnetic Resonance Spectroscopy , Male , Mass Spectrometry , Morpholines/chemistry , Pyrimidines/chemistry , Rats , Rats, Sprague-Dawley , Structure-Activity Relationship
11.
J Med Chem ; 48(3): 744-52, 2005 Feb 10.
Article in English | MEDLINE | ID: mdl-15689158

ABSTRACT

Novel transient receptor potential vanilloid 1 (TRPV1) receptor antagonists with various bicyclic heteroaromatic pharmacophores were synthesized, and their in vitro activity in blocking capsaicin activation of TRPV1 was assessed. On the basis of the contribution of these pharmacophores to the in vitro potency, they were ranked in the order of 5-isoquinoline > 8-quinoline = 8-quinazoline > 8-isoquinoline > or = cinnoline approximately phthalazine approximately quinoxaline approximately 5-quinoline. The 5-isoquinoline-containing compound 14a (hTRPV1 IC50 = 4 nM) exhibited 46% oral bioavailability and in vivo activity in animal models of visceral and inflammatory pain. Pharmacokinetic and pharmacological properties of 14a are substantial improvements over the profile of the high-throughput screening hit 1 (hTRPV1 IC50 = 22 nM), which was not efficacious in animal pain models and was not orally bioavailable.


Subject(s)
Analgesics/chemical synthesis , Isoquinolines/chemical synthesis , Pain/drug therapy , Receptors, Drug/antagonists & inhibitors , Urea/analogs & derivatives , Urea/chemical synthesis , Abdominal Pain/drug therapy , Administration, Oral , Analgesics/chemistry , Analgesics/pharmacology , Animals , Biological Availability , Calcium/metabolism , Cells, Cultured , Disease Models, Animal , Heterocyclic Compounds, 2-Ring/chemical synthesis , Heterocyclic Compounds, 2-Ring/chemistry , Heterocyclic Compounds, 2-Ring/pharmacology , Humans , Hyperalgesia/drug therapy , Isoquinolines/chemistry , Isoquinolines/pharmacology , Models, Molecular , Quinazolines/chemical synthesis , Quinazolines/chemistry , Quinazolines/pharmacology , Quinolines/chemical synthesis , Quinolines/chemistry , Quinolines/pharmacology , Rats , Static Electricity , Structure-Activity Relationship , Urea/chemistry , Urea/pharmacology
12.
J Med Chem ; 47(12): 3220-35, 2004 Jun 03.
Article in English | MEDLINE | ID: mdl-15163201

ABSTRACT

Structure-activity studies were performed on the alpha(1A)-adrenoceptor (AR) selective agonist N-[5-(1H-imidazol-4-yl)-5,6,7,8-tetrahydro-1-naphthalenyl]methanesulfonamide (4). Compounds were evaluated for binding activity at the alpha(1A), alpha(1b), alpha(1d), alpha(2a), and alpha(2B) subtypes. Functional activity in tissues containing the alpha(1A) (rabbit urethra), alpha(1B) (rat spleen), alpha(1D) (rat aorta), and alpha(2A) (rat prostatic vas deferens) was also evaluated. A dog in vivo model simultaneously measuring intraurethral pressure (IUP) and mean arterial pressure (MAP) was used to assess the uroselectivity of the compounds. Many of the compounds that were highly selective in vitro for the alpha(1A)-AR subtype were also more uroselective in vivo for increasing IUP over MAP than the nonselective alpha(1)-agonists phenylpropanolamine (PPA) (1) and ST-1059 (2, the active metabolite of midodrine), supporting the hypothesis that greater alpha(1A) selectivity would reduce cardiovascular side effects. However, the data also support a prominent role of the alpha(1A)-AR subtype in the control of MAP.


Subject(s)
Adrenergic alpha-1 Receptor Agonists , Imidazoles/chemical synthesis , Naphthalenes/chemical synthesis , Sulfonamides/chemical synthesis , Tetrahydronaphthalenes/chemical synthesis , Animals , Aorta/drug effects , Aorta/physiology , Blood Pressure/drug effects , Dogs , Female , Imidazoles/chemistry , Imidazoles/pharmacology , In Vitro Techniques , Male , Muscle Contraction/drug effects , Muscle Contraction/physiology , Muscle, Smooth/drug effects , Muscle, Smooth/physiology , Naphthalenes/chemistry , Naphthalenes/pharmacology , Rabbits , Radioligand Assay , Rats , Receptors, Adrenergic, alpha-1 , Spleen/drug effects , Spleen/physiology , Structure-Activity Relationship , Sulfonamides/chemistry , Sulfonamides/pharmacology , Tetrahydronaphthalenes/chemistry , Tetrahydronaphthalenes/pharmacology , Urethra/drug effects , Urethra/physiology , Vas Deferens/drug effects , Vas Deferens/physiology
13.
J Med Chem ; 46(24): 5249-57, 2003 Nov 20.
Article in English | MEDLINE | ID: mdl-14613327

ABSTRACT

The synthesis and structure-activity relationship of a series of 5,6,7-trisubstituted 4-aminopyrido[2,3-d]pyrimidines as novel nonnucleoside adenosine kinase inhibitors is described. A variety of alkyl, aryl, and heteroaryl substituents were found to be tolerated at the C5, C6, and C7 positions of the pyridopyrimidine core. These studies have led to the identification of analogues that are potent inhibitors of adenosine kinase with in vivo analgesic activity.


Subject(s)
Adenosine Kinase/antagonists & inhibitors , Analgesics/chemical synthesis , Pyridines/chemical synthesis , Pyrimidines/chemical synthesis , Adenosine Kinase/chemistry , Analgesics/chemistry , Analgesics/pharmacology , Animals , Cell Line, Tumor , Humans , Mice , Pain Measurement , Phosphorylation , Pyridines/chemistry , Pyridines/pharmacology , Pyrimidines/chemistry , Pyrimidines/pharmacology , Rats , Structure-Activity Relationship
14.
Eur J Med Chem ; 38(3): 245-52, 2003 Mar.
Article in English | MEDLINE | ID: mdl-12667691

ABSTRACT

Under stressful conditions, many cells release adenosine to minimize tissue damage. Inhibition of intracellular adenosine kinase (AK) increases the local extracellular concentration of adenosine and its effect on traumatized tissue. The synthesis and SAR of a new series of pyridopyrimidines for the inhibition of AK are described. It was found that a range of analogs with position five substituted by an amine or ether functionality increased aqueous solubility while retaining the in vitro potency of initial leads. A narrower range of analogs was active in vivo in a rat inflammatory hyperalgesia model.


Subject(s)
Adenosine Kinase/antagonists & inhibitors , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacology , Heterocyclic Compounds/chemical synthesis , Heterocyclic Compounds/pharmacology , Pyrimidines/chemical synthesis , Pyrimidines/pharmacology , Indicators and Reagents , Magnetic Resonance Spectroscopy , Solubility , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL