Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38097163

ABSTRACT

Exposure to stress induced by intermittent repeated social defeat (IRSD) increases vulnerability to the development of cocaine-induced conditioned place preference (CPP) among male mice; however, some defeated mice are resilient to these effects of stress. In the present study we evaluated the effects of vicarious IRSD (VIRSD) in female mice and explored behavioural traits that are potentially predictive of resilience. C57BL/6 female mice (n = 28) were exposed to VIRSD, which consisted of the animals witnessing a short experience of social defeat by a male mouse on postnatal day (PND) 47, 50, 53 and 56. The control group (n = 10) was not exposed to stress. Blood samples were collected on PND 47 and 56 for corticosterone and interleukin-6 determinations. On PND 57-58, female mice performed several behavioural tests (elevated plus maze, hole-board, object recognition, social interaction, TST and splash tests). Three weeks later, the effects of cocaine (1.5 mg/kg) on the CPP paradigm were assessed. VIRSD decreased corticosterone levels (on PND 56), increased interleukin-6 levels, enhanced novelty-seeking, improved recognition memory and induced anxiety- and depression-like symptoms. Control and VIRSD female mice did not acquire CPP, although some stressed individuals with certain behavioural traits - including a high novelty-seeking profile or the development of depression-like behaviour in the splash test shortly after VIRSD - acquired cocaine CPP. Our results confirm that some behavioural traits of female mice are associated with vulnerability or resilience to the long-term effects of social stress on cocaine reward, as previously observed in males.


Subject(s)
Cocaine , Resilience, Psychological , Mice , Male , Female , Animals , Corticosterone , Social Defeat , Interleukin-6 , Mice, Inbred C57BL , Cocaine/pharmacology , Reward , Stress, Psychological
2.
Nutrients ; 15(14)2023 Jul 24.
Article in English | MEDLINE | ID: mdl-37513683

ABSTRACT

Autism Spectrum Disorder (ASD) is characterized by varying degrees of difficulty in social interaction and communication. These deficits are often associated with gastrointestinal symptoms, indicating alterations in both intestinal microbiota composition and metabolic activities. The intestinal microbiota influences the function and development of the nervous system. In individuals with ASD, there is an increase in bacterial genera such as Clostridium, as well as species involved in the synthesis of branched-chain amino acids (BCAA) like Prevotella copri. Conversely, decreased amounts of Akkermansia muciniphila and Bifidobacterium spp. are observed. Epigallocatechin-3-gallate (EGCG) is one of the polyphenols with the greatest beneficial activity on microbial growth, and its consumption is associated with reduced psychological distress. Therefore, the objective of this review is to analyze how EGCG and its metabolites can improve the microbial dysbiosis present in ASD and its impact on the pathology. The analysis reveals that EGCG inhibits the growth of pathogenic bacteria like Clostridium perfringens and Clostridium difficile. Moreover, it increases the abundance of Bifidobacterium spp. and Akkermansia spp. As a result, EGCG demonstrates efficacy in increasing the production of metabolites involved in maintaining epithelial integrity and improving brain function. This identifies EGCG as highly promising for complementary treatment in ASD.


Subject(s)
Autism Spectrum Disorder , Gastrointestinal Microbiome , Humans , Child , Autism Spectrum Disorder/microbiology , Dysbiosis/microbiology , Bacteria
SELECTION OF CITATIONS
SEARCH DETAIL
...