Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
PLoS One ; 18(9): e0291678, 2023.
Article in English | MEDLINE | ID: mdl-37729332

ABSTRACT

BACKGROUND: SARS-CoV-2 Omicron variants have the potential to impact vaccine effectiveness and duration of vaccine-derived immunity. We analyzed U.S. multi-jurisdictional COVID-19 vaccine breakthrough surveillance data to examine potential waning of protection against SARS-CoV-2 infection for the Pfizer-BioNTech (BNT162b) primary vaccination series by age. METHODS: Weekly numbers of SARS-CoV-2 infections during January 16, 2022-May 28, 2022 were analyzed by age group from 22 U.S. jurisdictions that routinely linked COVID-19 case surveillance and immunization data. A life table approach incorporating line-listed and aggregated COVID-19 case datasets with vaccine administration and U.S. Census data was used to estimate hazard rates of SARS-CoV-2 infections, hazard rate ratios (HRR) and percent reductions in hazard rate comparing unvaccinated people to people vaccinated with a Pfizer-BioNTech primary series only, by age group and time since vaccination. RESULTS: The percent reduction in hazard rates for persons 2 weeks after vaccination with a Pfizer-BioNTech primary series compared with unvaccinated persons was lowest among children aged 5-11 years at 35.5% (95% CI: 33.3%, 37.6%) compared to the older age groups, which ranged from 68.7%-89.6%. By 19 weeks after vaccination, all age groups showed decreases in the percent reduction in the hazard rates compared with unvaccinated people; with the largest declines observed among those aged 5-11 and 12-17 years and more modest declines observed among those 18 years and older. CONCLUSIONS: The decline in vaccine protection against SARS-CoV-2 infection observed in this study is consistent with other studies and demonstrates that national case surveillance data were useful for assessing early signals in age-specific waning of vaccine protection during the initial period of SARS-CoV-2 Omicron variant predominance. The potential for waning immunity during the Omicron period emphasizes the importance of continued monitoring and consideration of optimal timing and provision of booster doses in the future.


Subject(s)
COVID-19 , Vaccines , Child , Humans , Aged , BNT162 Vaccine , COVID-19 Vaccines , COVID-19/epidemiology , COVID-19/prevention & control , Life Tables , SARS-CoV-2
3.
MMWR Morb Mortal Wkly Rep ; 72(25): 683-689, 2023 Jun 23.
Article in English | MEDLINE | ID: mdl-37347715

ABSTRACT

Although reinfections with SARS-CoV-2 have occurred in the United States with increasing frequency, U.S. epidemiologic trends in reinfections and associated severe outcomes have not been characterized. Weekly counts of SARS-CoV-2 reinfections, total infections, and associated hospitalizations and deaths reported by 18 U.S. jurisdictions during September 5, 2021-December 31, 2022, were analyzed overall, by age group, and by five periods of SARS-CoV-2 variant predominance (Delta and Omicron [BA.1, BA.2, BA.4/BA.5, and BQ.1/BQ.1.1]). Among reported reinfections, weekly trends in the median intervals between infections and frequencies of predominant variants during previous infections were calculated. As a percentage of all infections, reinfections increased substantially from the Delta (2.7%) to the Omicron BQ.1/BQ.1.1 (28.8%) periods; during the same periods, increases in the percentages of reinfections among COVID-19-associated hospitalizations (from 1.9% [Delta] to 17.0% [Omicron BQ.1/BQ.1.1]) and deaths (from 1.2% [Delta] to 12.3% [Omicron BQ.1/BQ.1.1]) were also substantial. Percentages of all COVID-19 cases, hospitalizations, and deaths that were reinfections were consistently higher across variant periods among adults aged 18-49 years compared with those among adults aged ≥50 years. The median interval between infections ranged from 269 to 411 days by week, with a steep decline at the start of the BA.4/BA.5 period, when >50% of reinfections occurred among persons previously infected during the Alpha variant period or later. To prevent severe COVID-19 outcomes, including those following reinfection, CDC recommends staying up to date with COVID-19 vaccination and receiving timely antiviral treatments, when eligible.


Subject(s)
COVID-19 , SARS-CoV-2 , Adolescent , Adult , Humans , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19 Vaccines , Hospitalization/trends , Reinfection/epidemiology , Hospital Mortality
4.
MMWR Morb Mortal Wkly Rep ; 72(6): 145-152, 2023 02 10.
Article in English | MEDLINE | ID: mdl-36757865

ABSTRACT

On September 1, 2022, CDC recommended an updated (bivalent) COVID-19 vaccine booster to help restore waning protection conferred by previous vaccination and broaden protection against emerging variants for persons aged ≥12 years (subsequently extended to persons aged ≥6 months).* To assess the impact of original (monovalent) COVID-19 vaccines and bivalent boosters, case and mortality rate ratios (RRs) were estimated comparing unvaccinated and vaccinated persons aged ≥12 years by overall receipt of and by time since booster vaccination (monovalent or bivalent) during Delta variant and Omicron sublineage (BA.1, BA.2, early BA.4/BA.5, and late BA.4/BA.5) predominance.† During the late BA.4/BA.5 period, unvaccinated persons had higher COVID-19 mortality and infection rates than persons receiving bivalent doses (mortality RR = 14.1 and infection RR = 2.8) and to a lesser extent persons vaccinated with only monovalent doses (mortality RR = 5.4 and infection RR = 2.5). Among older adults, mortality rates among unvaccinated persons were significantly higher than among those who had received a bivalent booster (65-79 years; RR = 23.7 and ≥80 years; 10.3) or a monovalent booster (65-79 years; 8.3 and ≥80 years; 4.2). In a second analysis stratified by time since booster vaccination, there was a progressive decline from the Delta period (RR = 50.7) to the early BA.4/BA.5 period (7.4) in relative COVID-19 mortality rates among unvaccinated persons compared with persons receiving who had received a monovalent booster within 2 weeks-2 months. During the early BA.4/BA.5 period, declines in relative mortality rates were observed at 6-8 (RR = 4.6), 9-11 (4.5), and ≥12 (2.5) months after receiving a monovalent booster. In contrast, bivalent boosters received during the preceding 2 weeks-2 months improved protection against death (RR = 15.2) during the late BA.4/BA.5 period. In both analyses, when compared with unvaccinated persons, persons who had received bivalent boosters were provided additional protection against death over monovalent doses or monovalent boosters. Restored protection was highest in older adults. All persons should stay up to date with COVID-19 vaccination, including receipt of a bivalent booster by eligible persons, to reduce the risk for severe COVID-19.


Subject(s)
COVID-19 Vaccines , COVID-19 , Humans , Aged , COVID-19/epidemiology , COVID-19/prevention & control , Incidence , SARS-CoV-2 , Vaccination
5.
MMWR Morb Mortal Wkly Rep ; 71(4): 132-138, 2022 Jan 28.
Article in English | MEDLINE | ID: mdl-35085223

ABSTRACT

Previous reports of COVID-19 case, hospitalization, and death rates by vaccination status† indicate that vaccine protection against infection, as well as serious COVID-19 illness for some groups, declined with the emergence of the B.1.617.2 (Delta) variant of SARS-CoV-2, the virus that causes COVID-19, and waning of vaccine-induced immunity (1-4). During August-November 2021, CDC recommended§ additional primary COVID-19 vaccine doses among immunocompromised persons and booster doses among persons aged ≥18 years (5). The SARS-CoV-2 B.1.1.529 (Omicron) variant emerged in the United States during December 2021 (6) and by December 25 accounted for 72% of sequenced lineages (7). To assess the impact of full vaccination with additional and booster doses (booster doses),¶ case and death rates and incidence rate ratios (IRRs) were estimated among unvaccinated and fully vaccinated adults by receipt of booster doses during pre-Delta (April-May 2021), Delta emergence (June 2021), Delta predominance (July-November 2021), and Omicron emergence (December 2021) periods in the United States. During 2021, averaged weekly, age-standardized case IRRs among unvaccinated persons compared with fully vaccinated persons decreased from 13.9 pre-Delta to 8.7 as Delta emerged, and to 5.1 during the period of Delta predominance. During October-November, unvaccinated persons had 13.9 and 53.2 times the risks for infection and COVID-19-associated death, respectively, compared with fully vaccinated persons who received booster doses, and 4.0 and 12.7 times the risks compared with fully vaccinated persons without booster doses. When the Omicron variant emerged during December 2021, case IRRs decreased to 4.9 for fully vaccinated persons with booster doses and 2.8 for those without booster doses, relative to October-November 2021. The highest impact of booster doses against infection and death compared with full vaccination without booster doses was recorded among persons aged 50-64 and ≥65 years. Eligible persons should stay up to date with COVID-19 vaccinations.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/epidemiology , COVID-19/mortality , COVID-19/prevention & control , Immunization, Secondary , SARS-CoV-2/immunology , Vaccine Efficacy , Adult , Aged , Humans , Incidence , Middle Aged , United States/epidemiology
6.
NEJM Evid ; 1(3)2022 Jan 10.
Article in English | MEDLINE | ID: mdl-37207114

ABSTRACT

BACKGROUND: With the emergence of the delta variant, the United States experienced a rapid increase in Covid-19 cases in 2021. We estimated the risk of breakthrough infection and death by month of vaccination as a proxy for waning immunity during a period of delta variant predominance. METHODS: Covid-19 case and death data from 15 U.S. jurisdictions during January 3 to September 4, 2021 were used to estimate weekly hazard rates among fully vaccinated persons, stratified by age group and vaccine product. Case and death rates during August 1 to September 4, 2021 were presented across four cohorts defined by month of vaccination. Poisson models were used to estimate adjusted rate ratios comparing the earlier cohorts to July rates. RESULTS: During August 1 to September 4, 2021, case rates per 100,000 person-weeks among all vaccine recipients for the January to February, March to April, May to June, and July cohorts were 168.8 (95% confidence interval [CI], 167.5 to 170.1), 123.5 (95% CI, 122.8 to 124.1), 83.6 (95% CI, 82.9 to 84.3), and 63.1 (95% CI, 61.6 to 64.6), respectively. Similar trends were observed by age group for BNT162b2 (Pfizer-BioNTech) and mRNA-1273 (Moderna) vaccine recipients. Rates for the Ad26.COV2.S (Janssen-Johnson & Johnson) vaccine were higher; however, trends were inconsistent. BNT162b2 vaccine recipients 65 years of age or older had higher death rates among those vaccinated earlier in the year. Protection against death was sustained for the mRNA-1273 vaccine recipients. Across age groups and vaccine types, people who were vaccinated 6 months ago or longer (January-February) were 3.44 (3.36 to 3.53) times more likely to be infected and 1.70 (1.29 to 2.23) times more likely to die from COVID-19 than people vaccinated recently in July 2021. CONCLUSIONS: Our study suggests that protection from SARS-CoV-2 infection among all ages or death among older adults waned with increasing time since vaccination during a period of delta predominance. These results add to the evidence base that supports U.S. booster recommendations, especially for older adults vaccinated with BNT162b2 and recipients of the Ad26.COV2.S vaccine. (Funded by the Centers for Disease Control and Prevention.).

7.
BMC Pediatr ; 19(1): 378, 2019 10 24.
Article in English | MEDLINE | ID: mdl-31651274

ABSTRACT

BACKGROUND: Research on outcomes associated with lifestyle interventions serving pediatric populations in urban settings, where a majority have severe obesity, is scarce. This study assessed whether participation in a lifestyle intervention improved body mass index (BMI) percentile, BMI z-score, blood pressure, and lipid levels for children and adolescents. METHODS: The Live Light Live Right program is a lifestyle intervention that uses medical assessment, nutritional education, access to physical fitness classes, and behavioral modification to improve health outcomes. Data was analyzed for 144 subjects aged 2-19 who participated for a minimum of 12 consecutive months between 2002 and 2016. McNemar tests were used to determine differences in the proportion of participants who moved from abnormal values at baseline to normal at follow-up for a given clinical measure. Paired sample t-tests assessed differences in blood pressure and lipid levels. Multiple linear regression assessed the change in blood pressure or lipid levels associated with improvement in BMI%95 and BMI z-score. RESULTS: The majority were female (62.5%), mean age was 9.6, and 71% were Black. At baseline, 70.1% had severe obesity, systolic hypertension was present in 44, and 13.9% had diastolic hypertension. One-third had abnormally low high-density lipoprotein (HDL) at baseline, 35% had elevated low-density lipoprotein (LDL), and 47% had abnormal total cholesterol (TC). The average difference in percentage points of BMI%95 at follow-up compared was - 3.0 (95% CI: - 5.0, - 1.1; p < 0.003). The mean difference in BMI z-score units at follow-up was - 0.15 (95% CI: - 0.2, - 0.1; p < 0.0001). Participants with systolic or diastolic hypertension had an average improvement in blood pressure of - 15.3 mmHg (p < 0.0001) and - 9.6 mmHg (p < 0.0001), respectively. There was a mean improvement of 4.4 mg/dL for participants with abnormal HDL (p < 0.001) and - 7.8 mg/dL for those with abnormal LDL at baseline (p = 0.036). For those with abnormal baseline TC, a one-unit improvement in BMI%95 was associated with a 0.61 mg/dL improvement in TC while holding constant age, contact hours, and months since enrollment (p = 0.043). CONCLUSIONS: Participation in the program resulted in significant improvements in BMI percentile, BMI z-score, blood pressure, and lipid levels.


Subject(s)
Life Style , Metabolic Syndrome/prevention & control , Pediatric Obesity/therapy , Tertiary Healthcare , Adolescent , Body Mass Index , Child , Child, Preschool , Female , Health Services Accessibility , Humans , Male , Metabolic Syndrome/epidemiology , Metabolic Syndrome/etiology , New York/epidemiology , Pediatric Obesity/complications , Retrospective Studies , Risk Assessment , Time Factors , Urban Health , Urban Population , Young Adult
8.
Child Obes ; 13(3): 236-241, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28398850

ABSTRACT

BACKGROUND: Ethnic differences in lipid profiles exist in children and adolescents. This study assessed whether variations in lipid profiles present in overweight and obese youth were also observed in severely obese youth. Variations could explain the lower prevalence of the metabolic syndrome in certain ethnic groups at even severe levels of obesity. METHODS: Data were obtained from the National Health and Nutrition Examination Survey for the years of 2001 through 2012. Subjects were divided into groups according to BMI classification. Normal weight was defined as a BMI less than the 85th percentile. Overweight was defined as a BMI between the 85th and 95th percentile. Class 1 obesity was defined as a BMI greater than the 95th percentile up to 120% of the 95th percentile. A BMI between 120% and 140% of the 95th percentile was defined as Class 2 obesity. Class 3 was defined as a BMI above 140% of the 95th percentile. Primary outcomes were mean total cholesterol, triglyceride, low-density lipoprotein, and high-density lipoprotein levels (HDL). RESULTS: The sample included 14,481 non-Hispanic black (NHB) (N = 4710), non-Hispanic white (N = 4910), and Mexican American (N = 4861) subjects. Across all BMI categories, the NHB group had significantly lower mean TG and higher mean HDL levels (p < 0.0001). CONCLUSIONS: Ethnic variations in lipid profiles were found in severely obese youth. These findings could explain the lower prevalence of the metabolic syndrome in NHB youth. Ethnic-specific guidelines are necessary for improved identification of those at risk at all levels of obesity.


Subject(s)
Ethnicity , Lipids/blood , Pediatric Obesity/ethnology , Adolescent , Black People , Body Mass Index , Child , Cholesterol/blood , Cholesterol, HDL/blood , Female , Humans , Male , Metabolic Syndrome/epidemiology , Metabolic Syndrome/ethnology , Mexican Americans , Nutrition Surveys , Obesity, Morbid/epidemiology , Obesity, Morbid/ethnology , Pediatric Obesity/epidemiology , Triglycerides/blood , White People , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...