Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Biomaterials ; 311: 122647, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38878479

ABSTRACT

DNA technology has emerged as a promising route to accelerated manufacture of sequence agnostic vaccines. For activity, DNA vaccines must be protected and delivered to the correct antigen presenting cells. However, the physicochemical properties of the vector must be carefully tuned to enhance interaction with immune cells and generate sufficient immune response for disease protection. In this study, we have engineered a range of polymer-based nanocarriers based on the poly(beta-amino ester) (PBAE) polycation platform to investigate the role that surface poly(ethylene glycol) (PEG) density has on pDNA encapsulation, formulation properties and gene transfectability both in vitro and in vivo. We achieved this by synthesising a non-PEGylated and PEGylated PBAE and produced formulations containing these PBAEs, and mixed polyplexes to tune surface PEG density. All polymers and co-formulations produced small polyplex nanoparticles with almost complete encapsulation of the cargo in all cases. Despite high gene transfection in HEK293T cells, only the fully PEGylated and mixed formulations displayed significantly higher expression of the reporter gene than the negative control in dendritic cells. Further in vivo studies with a bivalent SARS-CoV-2 pDNA vaccine revealed that only the mixed formulation led to strong antigen specific T-cell responses, however this did not translate into the presence of serum antibodies indicating the need for further studies into improving immunisation with polymer delivery systems.

2.
Nanoscale Adv ; 6(5): 1409-1422, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38419881

ABSTRACT

Therapeutic self-amplifying RNA (saRNA) is a promising approach for disease treatment, as it can be administered in lower doses than messenger RNA (mRNA) to achieve comparable protein production levels. However, saRNA requires an appropriate delivery vehicle to protect it during transit and facilitate its transfection. A widely-adopted approach has been to use polycations to condense these large anionic macromolecules into polyplex nanoparticles, however their high charge density often elicits cytotoxic effects. In this study we postulated that we could improve the potency and tolerability of such delivery vehicles by co-formulating poly(ß-amino ester)s saRNA polyplexes with a non-toxic anionic polymer, γ-polyglutamic acid (γ-PGA) to neutralize partially this positive charge. Accordingly, we prepared a poly(ß-amino ester) from 1,6-hexanedioldiacrylate (HDDA) and 4-aminobutanol (ABOL) and initially evaluated the physicochemical properties of the binary polyplexes (i.e. formed from polymer and saRNA only). Optimised binary polyplex formulations were then taken forward for preparation of ternary complexes containing pHDDA-ABOL, saRNA and γ-PGA. Our findings demonstrate that γ-PGA integration into polyplexes significantly enhanced transfection efficacy in HEK293T and A431 cells without affecting polyplex size. Notably, γ-PGA incorporation leads to a pronounced reduction in zeta potential, which reduced the toxicity of the ternary complexes in moDC, NIH3T3, and A431 cells. Furthermore, the presence of γ-PGA contributed to colloidal stability, reducing aggregation of the ternary complexes, as evidenced by insignificant changes in polydispersity index (PDI) after freeze-thaw cycles. Overall, these results suggest that incorporating the appropriate ratio of a polyanion such as γ-PGA with polycations in RNA delivery formulations is a promising way to improve the in vitro delivery of saRNA.

3.
Int J Pharm ; 654: 123935, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38395319

ABSTRACT

Carvedilol (CV), a ß-blocker essential for treating cardiovascular diseases, faces bioavailability challenges due to poor water solubility and first-pass metabolism. This study developed and optimized chitosan (CS)-coated niosomes loaded with CV (CS/CV-NS) for intranasal (IN) delivery, aiming to enhance systemic bioavailability. Utilizing a Quality-by-Design (QbD) approach, the study investigated the effects of formulation variables, such as surfactant type, surfactant-to-cholesterol (CHOL) ratio, and CS concentration, on CS/CV-NS properties. The focus was to optimize specific characteristics including particle size (PS), polydispersity index (PDI), zeta potential (ZP), entrapment efficiency (EE%), and mucin binding efficiency (MBE%). The optimal formulation (Opt CS/CV-NS), achieved with a surfactant: CHOL ratio of 0.918 and a CS concentration of 0.062 g/100 mL, using Span 60 as the surfactant, exhibited a PS of 305 nm, PDI of 0.36, ZP of + 33 mV, EE% of 63 %, and MBE% of 57 %. Opt CS/CV-NS was characterized for its morphological and physicochemical properties, evaluated for stability under different storage conditions, and assessed for in vitro drug release profile. Opt CS/CV-NS demonstrated a 1.7-fold and 4.8-fold increase in in vitro CV release after 24 h, compared to uncoated CV-loaded niosomes (Opt CV-NS) and free CV, respectively. In vivo pharmacokinetic (PK) study, using a rat model, demonstrated that Opt CS/CV-NS achieved faster Tmax and higher Cmax compared to free CV suspension indicating enhanced absorption rate. Additionally, Opt CV-NS showed a 1.68-fold higher bioavailability compared to the control. These results underscore the potential of niosomal formulations in enhancing IN delivery of CV, offering an effective strategy for improving drug bioavailability and therapeutic efficacy.


Subject(s)
Liposomes , Surface-Active Agents , Rats , Animals , Liposomes/chemistry , Carvedilol , Administration, Intranasal , Drug Liberation , Particle Size , Drug Carriers/chemistry , Biological Availability
4.
Int J Biol Macromol ; 253(Pt 2): 126706, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37673144

ABSTRACT

Helicobacter pylori (H. pylori) is a causative agent of various gastrointestinal diseases and eradication mainly relies on antibiotic treatment, with (AMX) being a key component. However, rising antibiotic resistance in H. pylori necessitates the use of antibiotics combination therapy, often disrupting gut microbiota equilibrium leading to further health complications. This study investigates a novel strategy utilizing AMX-loaded chitosan nanoparticles (AMX-CS NPs), co-administered with prebiotic inulin to counteract H. pylori infection while preserving microbiota health. Following microbroth dilution method, AMX displayed efficacy against H. pylori, with a MIC50 of 48.34 ± 3.3 ng/mL, albeit with a detrimental impact on Lactobacillus casei (L. casei). The co-administration of inulin (500 µg/mL) with AMX restored L. casei viability while retaining the lethal effect on H. pylori. Encapsulation of AMX in CS-NPs via ionic gelation method, resulted in particles of 157.8 ± 3.85 nm in size and an entrapment efficiency (EE) of 86.44 ± 2.19 %. Moreover, AMX-CS NPs showed a sustained drug release pattern over 72 h with no detectable toxicity on human dermal fibroblasts cell lines. Encapsulation of AMX into CS NPs also reduced its MIC50 against H. pylori, while its co-administration with inulin maintained L. casei viability. Interestingly, treatment with AMX-CS NPs also reduced the expression of the efflux pump gene hefA in H. pylori. This dual treatment strategy offers a promising approach for more selective antimicrobial treatment, minimizing disruption to healthy microbial communities while effectively addressing pathogenic threats.


Subject(s)
Chitosan , Gastrointestinal Microbiome , Helicobacter Infections , Helicobacter pylori , Nanoparticles , Humans , Amoxicillin/pharmacology , Chitosan/pharmacology , Inulin/pharmacology , Anti-Bacterial Agents/pharmacology , Helicobacter Infections/drug therapy , Drug Resistance, Microbial
SELECTION OF CITATIONS
SEARCH DETAIL
...