Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Food Res Int ; 187: 114452, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38763687

ABSTRACT

The antioxidant activity of the natural phenolic extracts is limited in particular food systems due to the existence of phenolic compounds in glycoside form. Acid hydrolysis post-treatment could be a tool to convert the glycosidic polyphenols in the extracts to aglycones. Therefore, this research investigated the effects of an acid hydrolysis post-treatment on the composition and antioxidant activity of parsley extracts obtained by an ultrasound-assisted extraction method to delay lipid oxidation in a real food system (i.e., soybean oil-in-water emulsion). Acid hydrolysis conditions were varied to maximize total phenolic content (TPC) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity. When extracts were exposed to 0.6 M HCl for 2 h at 80 ℃, TPC was 716.92 ± 24.43 µmol gallic acid equivalent (GAE)/L, and DPPH radical scavenging activity was 66.89 ± 1.63 %. Not only did acid hydrolysis increase the concentrations of individual polyphenols, but it also resulted in the release of new phenolics such as myricetin and gallic acid. The extract's metal chelating and ferric-reducing activity increased significantly after acid hydrolysis. In soybean oil-in-water emulsion containing a TPC of 400 µmol GAE/L, the acid-hydrolyzed extract had an 11-day lag phase for headspace hexanal compared to the 6-day lag phase of unhydrolyzed extract. The findings indicated that the conversion of glycosidic polyphenols to aglycones in phenolic extracts can help extend the shelf-life of emulsion-based foods.


Subject(s)
Antioxidants , Emulsions , Petroselinum , Phenols , Plant Extracts , Plant Leaves , Soybean Oil , Emulsions/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Soybean Oil/chemistry , Phenols/chemistry , Hydrolysis , Antioxidants/pharmacology , Antioxidants/chemistry , Petroselinum/chemistry , Plant Leaves/chemistry , Oxidation-Reduction , Water/chemistry , Lipid Peroxidation/drug effects , Biphenyl Compounds/chemistry , Picrates/chemistry , Polyphenols/chemistry , Polyphenols/pharmacology
2.
J Agric Food Chem ; 72(9): 4939-4946, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38401060

ABSTRACT

The kinetics of lipid oxidation includes a lag phase followed by an exponential increase in oxidation products, which cause rancidity. Current models focus on the slope of this exponential curve for shelf-life estimation, which still requires the measurement of full oxidation kinetics. In this paper, we analyzed the formation of lipid oxidation products in stripped soybean oil containing different levels of α-tocopherol. The lag phases of lipid hydroperoxides and headspace hexanal formation were found to have a strong positive correlation with the α-tocopherol depletion time. We propose that the kinetics of antioxidant (α-tocopherol) depletion occur during the lag phase and could serve as an early shelf-life indicator. Our results showed that α-tocopherol degradation can be described by Weibull kinetics over a wide range of initial concentrations. Furthermore, we conducted in silico investigations using Monte Carlo simulations to critically evaluate the feasibility and sensitivity of the shelf-life prediction using early antioxidant degradation kinetics. Our results revealed that the shelf life of soybean oil may be accurately predicted as early as 20% of the overall shelf life. This innovative approach provides a more efficient and faster assessment of shelf life, ultimately reducing waste and enhancing product quality.


Subject(s)
Antioxidants , alpha-Tocopherol , Soybean Oil , Oxidation-Reduction , Oils , Kinetics
3.
J Agric Food Chem ; 71(24): 9490-9500, 2023 Jun 21.
Article in English | MEDLINE | ID: mdl-37279160

ABSTRACT

The antioxidant interactions between α-tocopherol and myricetin in stripped soybean oil-in-water emulsions at pH 4.0 and pH 7.0 were analyzed. At pH 7.0, α-tocopherol (α-TOC):myricetin (MYR) ratios of 2:1 and 1:1 yielded interaction indices of 3.00 and 3.63 for lipid hydroperoxides and 2.44 and 3.00 for hexanal formation, indicating synergism. Myricetin's ability to regenerate oxidized α-tocopherol and slow its degradation was identified as the synergism mechanism. Antagonism was observed at pH 4.0 due to high ferric-reducing activity of myricetin in acidic environment. The interaction between α-tocopherol and taxifolin (TAX) was also investigated due to structural similarities of myricetin and taxifolin. α-Tocopherol and taxifolin combinations exhibited antagonism at both pH 4.0 and pH 7.0. This was associated with taxifolin's inability to recycle α-tocopherol while still increasing the prooxidant activity of iron. The combination of α-tocopherol and myricetin was found to be an excellent antioxidant strategy for oil-in-water emulsions at pH values near neutrality.


Subject(s)
Antioxidants , alpha-Tocopherol , alpha-Tocopherol/chemistry , Antioxidants/chemistry , Emulsions/chemistry , Water/chemistry , Oxidation-Reduction
4.
J Agric Food Chem ; 70(41): 13404-13412, 2022 Oct 19.
Article in English | MEDLINE | ID: mdl-36215731

ABSTRACT

Oxidized α-tocopherol can be regenerated by phosphatidylethanolamine (PE), but current commercial sources of PE are too expensive for use as a food additive. The present study aims to determine the optimal reaction conditions for generating high PE lecithin (MHPEL) enzymatically and to validate the MHPEL's synergism with tocopherol in delaying lipid oxidation in an oil-in-water emulsion system at pH 7 and 4 and in bulk oil. Under optimal conditions of pH 9.0, 37 °C and 4 h, a MHPEL with ∼71.6% PE was obtained from 96% phosphatidylcholine lecithin using phospholipase D from Streptomyces chromofuscus. Mixed tocopherols (300 µmol/kg oil) and MHPEL (1500 µmol/kg oil) synergistically increased both the hydroperoxide and hexanal lag phase of lipid oxidation in stripped soybean oil-in-water emulsions at pH 7 by 3 days. At pH 4, this combination increased the hydroperoxide and hexanal lag phases by 3 and 2 days, respectively. The combination of 50 µmol/kg oil α-tocopherol and 1000 µmol/kg oil MHPEL also synergistically increased the hydroperoxide (5 days) and hexanal (4 days) lag phases in stripped bulk soybean oil. This approach represents a potential clean-label antioxidant system that could have commercial applications to decrease food waste.


Subject(s)
Phospholipase D , Refuse Disposal , Antioxidants/analysis , Tocopherols , Lecithins , Emulsions , Soybean Oil , Phosphatidylethanolamines , alpha-Tocopherol , Hydrogen Peroxide , Food , Food Additives , Oxidation-Reduction , Water
5.
Food Chem ; 367: 130726, 2022 Jan 15.
Article in English | MEDLINE | ID: mdl-34352698

ABSTRACT

The impact of different complexes on the properties of ß-carotene-loaded emulsions was investigated by measuring the droplet size, encapsulation efficiency, droplet morphology, and physical stability. The photo and thermal stability of ß-carotene and its bioaccessibility during digestion were also analyzed. Comparing to the emulsions stabilized by other complexes, the emulsion stabilized by the high methoxyl pectin-rhamnolipid-pea protein isolate-curcumin (HMP-Rha-PPI-Cur) complex had the smallest droplet size (17.53 ± 0.15 µm) and the maximum encapsulation efficiency for curcumin (90.33 ± 0.03 %) and ß-carotene (92.16 ± 0.01 %). The emulsion stabilized by the HMP-Rha-PPI-Cur complex exhibited better physical stability against creaming. The retention rate of ß-carotene in the HMP-Rha-PPI-Cur complex-stabilized emulsion was 17.75 ± 0.02 and 33.64 ± 0.02 % after UV irradiation and thermal treatment. The HMP-Rha-PPI-Cur complex-stabilized emulsion also had a higher level of free fatty acid released (43.67 %) and higher bioaccessibility of ß-carotene (32.35 ± 0.02 %).


Subject(s)
Curcumin , Pea Proteins , Carotenoids , Emulsions , Particle Size , Pectins , Surface-Active Agents , beta Carotene
6.
J Agric Food Chem ; 69(20): 5702-5708, 2021 May 26.
Article in English | MEDLINE | ID: mdl-33977711

ABSTRACT

As emulsifiers become saturated on the surface of an emulsion droplet, any additional emulsifier migrates to the aqueous phase. Continuous phase surfactants have been shown to increase α-tocopherol efficacy, but it is unclear if this is the result of chemical or physical effects. The addition of α-tocopherol to an oil-in-water emulsion after homogenization resulted in a 70% increase of α-tocopherol in the continuous phase when sodium dodecyl sulfate (SDS) was at levels that were greater than the SDS critical micelle concentration. Conversely, when α-tocopherol was dissolved in the lipid before emulsification, continuous phase SDS concentrations did not increase. When SDS concentration led to an increase in the aqueous phase α-tocopherol, the oxidative stability of oil-in-water emulsions increased. Data indicated that the increased antioxidant activity was the result of surfactant micelles being able to decrease the prooxidant activity of α-tocopherol. Considering these results, surfactant micelles could be an important tool to increase the effectiveness of α-tocopherol.


Subject(s)
Antioxidants , Micelles , Emulsions , Sodium Dodecyl Sulfate , Surface-Active Agents , alpha-Tocopherol
SELECTION OF CITATIONS
SEARCH DETAIL
...