Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
1.
Hemoglobin ; 47(4): 147-151, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37548174

ABSTRACT

Beta Thalassemia is the most prevalent and well-studied single gene disorder in Iran. Here, we investigated the spectrum of HBB gene mutations, identified among 2315 patients, referred to a reference thalassemia clinic in Tehran, on the basis of suspicion to thalassemia major or intermedia. The patients were homozygous or compound heterozygous for HBB mutations, and were referred from various Iranian provinces, during 15 years (2001- 2016). The HBB mutations were classified based on their frequency, and the result was compared to a meta-analysis of 14,293 beta thalassemia cases in the Iranian population, within the same time period. The mutation spectrum in this study contained 43 HBB mutations, compared to the 90, presented by the meta-analysis. Similar to the meta-analysis, IVSII-1 (G > A) and IVSI-5 (G > C) were the most common mutations in this study. These two comprised 62.40% of the total HBB mutant alleles in the studied population, comparable to 51.92% of that in the meta-analysis. IVSII-1 (G > A) and IVSI-5 (G > C), followed by 17 other mutations that had frequencies ranging from 0.15% to 5.44%, were among the 20 common HBB mutations in Iran and neighboring countries, according to the meta-analysis. This study provided further evidence to support the spectrum of the most common HBB mutations in the Iranian population.


Subject(s)
Thalassemia , beta-Thalassemia , Humans , beta-Thalassemia/diagnosis , beta-Thalassemia/epidemiology , beta-Thalassemia/genetics , Iran/epidemiology , beta-Globins/genetics , Mutation , Genotype
2.
Arch Iran Med ; 24(5): 364-373, 2021 05 01.
Article in English | MEDLINE | ID: mdl-34196201

ABSTRACT

BACKGROUND: Neurodevelopmental and intellectual impairments are extremely heterogeneous disorders caused by a diverse variety of genes involved in different molecular pathways and networks. Genetic alterations in cilia, highly-conserved organelles with sensorineural and signal transduction roles can compromise their proper functions and lead to so-called "ciliopathies" featuring intellectual disability (ID) or neurodevelopmental disorders as frequent clinical manifestations. Here, we report several Iranian families affected with ID and other ciliopathy-associated features carrying known and novel variants in two ciliary genes; CEP104 and CEP290. METHODS: Whole exome and Targeted exome sequencing were carried out on affected individuals. Lymphoblastoid cell lines (LCLs) derived from the members of affected families were established for two families carrying CEP104 mutations. RNA and protein expression studies were carried out on these cells using qPCR and Western blot, respectively. RESULTS: A novel homozygous variant; NM_025114.3:c.7341_7344dupACTT p.(Ser2449Thrfs*8) and four previously reported homozygous variants; NM_025114.3:c.322C>T p.(Arg108*), NM_025114.3:c.4393C>T p.(Arg1465*), NM_025114.3:c.5668G>T p.(Gly1890*) and NM_025114.3:c.1666dupA p.(Ile556Asnfs*20) were identified in CEP290. In two other families, two novel homozygous variants; NM_014704:c.2356_2357insTT p.(Cys786Phefs*11) and NM_014704:c.1901_1902insT p.(Leu634Phefs*33) were identified in CEP104, another ciliary gene. qPCR and Western blot analyses showed significantly lower levels of CEP104 transcripts and protein in patients compared to heterozygous or normal family members. CONCLUSION: We emphasize on the clinical variability and pleiotropic phenotypes due to variants of these genes. In conclusion, our findings support the pivotal role of these genes resulting in cognitive and neurodevelopmental features.


Subject(s)
Intellectual Disability , Antigens, Neoplasm , Cell Cycle Proteins/genetics , Cytoskeletal Proteins/genetics , Exome , Humans , Intellectual Disability/genetics , Iran , Mutation , Pedigree , Exome Sequencing
3.
Clin Genet ; 100(1): 59-78, 2021 07.
Article in English | MEDLINE | ID: mdl-33713422

ABSTRACT

Hearing loss (HL) is one of the most common sensory defects affecting more than 466 million individuals worldwide. It is clinically and genetically heterogeneous with over 120 genes causing non-syndromic HL identified to date. Here, we performed exome sequencing (ES) on a cohort of Iranian families with no disease-causing variants in known deafness-associated genes after screening with a targeted gene panel. We identified likely causal variants in 20 out of 71 families screened. Fifteen families segregated variants in known deafness-associated genes. Eight families segregated variants in novel candidate genes for HL: DBH, TOP3A, COX18, USP31, TCF19, SCP2, TENM1, and CARMIL1. In the three of these families, intrafamilial locus heterogeneity was observed with variants in both known and novel candidate genes. In aggregate, we were able to identify the underlying genetic cause of HL in nearly 30% of our study cohort using ES. This study corroborates the observation that high-throughput DNA sequencing in populations with high rates of consanguineous marriages represents a more appropriate strategy to elucidate the genetic etiology of heterogeneous conditions such as HL.


Subject(s)
Exome/genetics , Genetic Predisposition to Disease/genetics , Hearing Loss/genetics , Adolescent , Adult , Child , Child, Preschool , Cohort Studies , Female , High-Throughput Nucleotide Sequencing/methods , Humans , Iran , Male , Middle Aged , Mutation/genetics , Pedigree , Exome Sequencing/methods , Young Adult
4.
Iran J Public Health ; 48(10): 1910-1915, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31850270

ABSTRACT

BACKGROUND: Diagnosis of hereditary hearing loss (HHL) as a heterogeneous disorder is very important especially in countries with high rates of consanguinity where the autosomal recessive pattern of inheritance is prevalent. Techniques such as next-generation sequencing, a comprehensive genetic test using targeted genomic enrichment and massively parallel sequencing (TGE + MPS), have made the diagnosis more cost-effective. The aim of this study was to determine HHL variants with comprehensive genetic testing in our country. METHODS: Fifty GJB2 negative individuals with HHL were referred to the Kariminejad-Najmabadi Pathology and Genetics Center, Tehran, one of the reference diagnostic genetic laboratories in Iran, during a 3-year period between 2014 and 2017. They were screened with the OtoSCOPE test, the targeted genomic enrichment and massively parallel sequencing (TGE + MPS) platform after a detailed history had been taken along with clinical evaluation. RESULTS: Among 32 out of 50 GJB2 negative patients (64%), 34 known pathogenic and novel variants were detected of which 16 (47%) were novel, identified in 10 genes of which the most prevalent were CDH23, MYO7A and MYO15A. CONCLUSION: These results provide a foundation from which to make appropriate recommendations for the use of comprehensive genetic testing in the evaluation of Iranian patients with hereditary hearing loss.

5.
Int J Pediatr Otorhinolaryngol ; 126: 109607, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31419744

ABSTRACT

Mutations in the GJB2 gene encoding connexin 26 (Cx26) cause autosomal recessive and rarely dominant nonsyndromic sensorineural hearing loss as well as asyndromic hearing impairment with skin problems. A dominant GJB2 mutation, c.389G > T (p.G130V), has been reported previously in association with hearing impairment and palmoplantar keratoderm. Here we report the first de novo G130V mutation of GJB2 gene in a sporadic case of hearing loss in a consanguineous Iranian family which is not associated with skin disorder.


Subject(s)
Connexins/genetics , Hearing Loss, Sensorineural/genetics , Mutation , Adolescent , Connexin 26 , Consanguinity , Female , Heterozygote , Humans , Iran , Keratoderma, Palmoplantar , Male , Pedigree , Sequence Analysis, DNA
6.
Am J Med Genet B Neuropsychiatr Genet ; 177(8): 691-699, 2018 12.
Article in English | MEDLINE | ID: mdl-30450701

ABSTRACT

The advent of high-throughput sequencing technologies has led to an exponential increase in the identification of novel disease-causing genes in highly heterogeneous diseases. A novel frameshift mutation in CNKSR1 gene was detected by Next-Generation Sequencing (NGS) in an Iranian family with syndromic autosomal recessive intellectual disability (ARID). CNKSR1 encodes a connector enhancer of kinase suppressor of Ras 1, which acts as a scaffold component for receptor tyrosine kinase in mitogen-activated protein kinase (MAPK) cascades. CNKSR1 interacts with proteins which have already been shown to be associated with intellectual disability (ID) in the MAPK signaling pathway and promotes cell migration through RhoA-mediated c-Jun N-terminal kinase (JNK) activation. Lack of CNKSR1 transcripts and protein was observed in lymphoblastoid cells derived from affected patients using qRT-PCR and western blot analysis, respectively. Furthermore, RNAi-mediated knockdown of cnk, the CNKSR1 orthologue in Drosophila melanogaster brain, led to defects in eye and mushroom body (MB) structures. In conclusion, our findings support the possible role of CNKSR1 in brain development which can lead to cognitive impairment.


Subject(s)
Intellectual Disability/genetics , Intracellular Signaling Peptides and Proteins/genetics , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Adolescent , Adult , Animals , Brain/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster , Family , Female , Genes, Recessive , High-Throughput Nucleotide Sequencing , Humans , Intellectual Disability/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Iran , MAP Kinase Signaling System/genetics , Male , Mutation , Pedigree , Signal Transduction , Syndrome
7.
Med J Islam Repub Iran ; 32: 135, 2018.
Article in English | MEDLINE | ID: mdl-30815430

ABSTRACT

Background: PI3K/Akt/mTOR pathway is a crucial pathway in the angiogenesis, tumour growth and cell differentiation of several cancers. The PI3K and KIT genes are key genes of this pathway. Previous studies have reported the importance of these genes in the development of gastrointestinal carcinoma, leukaemia, and melanomas. The role of mutations and overexpression of PI3K and KIT genes in breast cancer has been previously proved. This study investigates the correlation between PI3K and KIT gene mutations in sporadic breast cancer. Methods: Multiplex Ligation-dependent Probe Amplification (MLPA) technique was used to determine the Copy Number Variation (CNV) of PI3K and KIT genes in 34 breast cancer tumours and PCR-sequencing was used to detect the mutation in PI3K exons 9 and 20. Results: Our results reported that 27% of patients had CNV of the KIT gene; whereas, 20% and 17.5% of patients, had mutation and CNV in the PI3K gene, respectively. We did not found a significant correlation between the mutations of PI3K and KIT genes. Conclusion: About two-tenth of the patients revealed CNV and lesser than two-tenth indicated mutation in the PI3K gene, whereas one-third of the patients demonstrated CNV in the KIT gene. Thus, administration of the PI3K and KIT gene inhibitor drugs might be proposed to suppress breast cancer in patients with mutation and CNV of each of these individual genes.

8.
Adv Pharm Bull ; 7(3): 491-494, 2017 Sep.
Article in English | MEDLINE | ID: mdl-29071234

ABSTRACT

Purpose: Sporadic Alzheimer's disease (AD) accounts for over 95% of cases. Possible mechanisms of AD such as inflammation and oxidative stresses in the brain motivate researchers to follow many therapies which would be effective, especially in the early stages of the disease. IMOD, the herbal extract of R. Canina, T. Vulgare and U. Dioica plant species enriched with selenium, has anti-inflammatory, immunoregulatory and protective effects against oxidative stress. Methods: In this study three AD-related genes, DAXX, NFκß and VEGF, were chosen as candidate to investigate the neuroprotective effect of the extract by comparing their expression levels in the hippocampus of rat model of sporadic AD, using qPCR in the herbal-treated and control groups. The therapeutic effects on learning and memory levels were evaluated by Morris Water Maze (MWM) test. Results: Gene expression results were indicative of significant up-regulation of Vegf in rat's hippocampus after treatment with the herbal extract comparing to model group (P-value= 0.001). The MWM results showed significant changes in path length and time for finding the hidden platform in all groups during test and the same change in the treated comparing to the control group in memory level. Conclusion: It could be concluded that the herbal extract may have significant effect on gene expression but not on behavioral level.

9.
Avicenna J Med Biotechnol ; 9(3): 133-137, 2017.
Article in English | MEDLINE | ID: mdl-28706608

ABSTRACT

BACKGROUND: Possible mechanisms of Alzheimer Disease (AD) such as inflammation and oxidative stresses in the brain led us to investigate potential AD therapeutics of Melilotus officinalis, an herbal extract, with possible role as an anti-inflammatory and anti-oxidant agent. Among different genes which had important role in Sporadic AD (SAD), three genes including DAXX, NFkB and VEGF have shown significant statistical diversity in the brains of Alzheimer patients. METHODS: These genes were chosen to be investigated for neuroprotective effects of the extract by comparing the expression level in the hippocampus of Sporadic AD (SAD) rat model using quantitative polymerase chain reaction (qPCR) in the treated and untreated groups. In addition, therapeutic effects at the behavioral, learning and memory level by Morris Water Maze (MWM) test were investigated. RESULTS: The results represented significant decreased expression in Daxx, Nfkb and Vegf genes in the SAD rat's model treated with the herbal extract compared to the Streptozotocin-induced (STZ-induced) rats. Furthermore, no significant changes were seen in swimming distance and time for finding the hidden platform in the herbal-treated compared to the STZ-induced group. In memory level, no significant changes were observed among treated and untreated groups. CONCLUSION: It seems that the herbal extract may have significant effect on Alzheimer-related gene expression changes but not on clinical levels.

10.
Adv Pharm Bull ; 7(4): 629-636, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29399553

ABSTRACT

Purpose: Alzheimer's disease (AD) is pathologically defined by the presence of amyloid plaques and tangles in the brain, therefore, any drug or compound with potential effect on lowering amyloid plaques, could be noticed for AD management especially in the primary phases of the disease. Ectoine constitutes a group of small molecule chaperones (SMCs). SMCs inhibit proteins and other changeable macromolecular structures misfolding from environmental stresses. Ectoine has been reported successfully prohibit insulin amyloid formation in vitro. Methods: We selected eight genes, DAXX, NFκß, VEGF, PSEN1, MTAP2, SYP, MAPK3 and TNFα genes which had previously showed significant differential expression in Alzheimer human brain and STZ- rat model. We considered the neuroprotective efficacy by comparing the expression of candidate genes levels in the hippocampus of rat model of Sopradic Alzheimer's disease (SAD), using qPCR in compound-treated and control groups as well as therapeutic effects at learning and memory levels by using Morris Water Maze (MWM) test. Results: Our results showed significant down-regulation of Syp, Mapk3 and Tnfα and up-regulation of Vegf in rat's hippocampus after treatment with ectoine comparing to the STZ-induced group. In MWM, there was no significant change in swimming distance and time for finding the hidden platform in treated comparing to STZ-induced group. In addition, it wasn't seen significant change in compound-treated comparing to STZ-induced and control groups in memory level. Conclusion: It seems this compound may have significant effect on expression level of some AD- related genes but not on clinical levels.

11.
Arch Iran Med ; 19(10): 720-728, 2016 Oct 01.
Article in English | MEDLINE | ID: mdl-27743438

ABSTRACT

A significant contribution to the causes of hereditary hearing impairment comes from genetic factors. More than 120 genes and 160 loci have been identified to be involved in hearing impairment. Given that consanguine populations are more vulnerable to most inherited diseases, such as hereditary hearing loss (HHL), the genetic picture of HHL among the Iranian population, which consists of at least eight ethnic subgroups with a high rate of intermarriage, is expected to be highly heterogeneous. Using an electronic literature review through various databases such as PubMed, MEDLINE, and Scopus, we review the current picture of HHL in Iran. In this review, we present more than 39 deafness genes reported to cause non-syndromic HHL in Iran, of which the most prevalent causative genes include GJB2, SLC26A4, MYO15A, and MYO7A. In addition, we highlight some of the more common genetic causes of syndromic HHL in Iran. These results are of importance for further investigation and elucidation of the molecular basis of HHL in Iran and also for developing a national diagnostic tool tailored to the Iranian context enabling early and efficient diagnosis of hereditary hearing impairment.


Subject(s)
Consanguinity , Hearing Loss, Sensorineural/epidemiology , Hearing Loss, Sensorineural/genetics , Connexin 26 , Connexins/genetics , Delivery of Health Care , Genetic Testing , Humans , Iran/epidemiology , Membrane Transport Proteins/genetics , Mutation , Myosin VIIa , Myosins/genetics , Sulfate Transporters
12.
J Med Genet ; 52(12): 823-9, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26445815

ABSTRACT

BACKGROUND: Countries with culturally accepted consanguinity provide a unique resource for the study of rare recessively inherited genetic diseases. Although hereditary hearing loss (HHL) is not uncommon, it is genetically heterogeneous, with over 85 genes causally implicated in non-syndromic hearing loss (NSHL). This heterogeneity makes many gene-specific types of NSHL exceedingly rare. We sought to define the spectrum of autosomal recessive HHL in Iran by investigating both common and rarely diagnosed deafness-causing genes. DESIGN: Using a custom targeted genomic enrichment (TGE) panel, we simultaneously interrogated all known genetic causes of NSHL in a cohort of 302 GJB2-negative Iranian families. RESULTS: We established a genetic diagnosis for 67% of probands and their families, with over half of all diagnoses attributable to variants in five genes: SLC26A4, MYO15A, MYO7A, CDH23 and PCDH15. As a reflection of the power of consanguinity mapping, 26 genes were identified as causative for NSHL in the Iranian population for the first time. In total, 179 deafness-causing variants were identified in 40 genes in 201 probands, including 110 novel single nucleotide or small insertion-deletion variants and three novel CNV. Several variants represent founder mutations. CONCLUSION: This study attests to the power of TGE and massively parallel sequencing as a diagnostic tool for the evaluation of hearing loss in Iran, and expands on our understanding of the genetics of HHL in this country. Families negative for variants in the genes represented on this panel represent an excellent cohort for novel gene discovery.


Subject(s)
Hearing Loss/genetics , Connexin 26 , Connexins , Consanguinity , Founder Effect , Gene Frequency , Genes, Recessive , Genetic Association Studies , Genetic Predisposition to Disease , Hearing Loss/pathology , Humans , Iran
14.
Eur J Hum Genet ; 23(3): 331-6, 2015 Mar.
Article in English | MEDLINE | ID: mdl-24569606

ABSTRACT

In the context of a comprehensive research project, investigating novel autosomal recessive intellectual disability (ARID) genes, linkage analysis based on autozygosity mapping helped identify an intellectual disability locus on Chr.12q24, in an Iranian family (LOD score = 3.7). Next-generation sequencing (NGS) following exon enrichment in this novel interval, detected a nonsense mutation (p.Q1010*) in the CLIP1 gene. CLIP1 encodes a member of microtubule (MT) plus-end tracking proteins, which specifically associates with the ends of growing MTs. These proteins regulate MT dynamic behavior and are important for MT-mediated transport over the length of axons and dendrites. As such, CLIP1 may have a role in neuronal development. We studied lymphoblastoid and skin fibroblast cell lines established from healthy and affected patients. RT-PCR and western blot analyses showed the absence of CLIP1 transcript and protein in lymphoblastoid cells derived from affected patients. Furthermore, immunofluorescence analyses showed MT plus-end staining only in fibroblasts containing the wild-type (and not the mutant) CLIP1 protein. Collectively, our data suggest that defects in CLIP1 may lead to ARID.


Subject(s)
Codon, Nonsense , Genes, Recessive , Intellectual Disability/genetics , Microtubule-Associated Proteins/genetics , Neoplasm Proteins/genetics , Adult , Consanguinity , Female , Genetic Linkage , Genetic Loci , High-Throughput Nucleotide Sequencing , Humans , Intellectual Disability/diagnosis , Male , Pedigree , Polymorphism, Single Nucleotide , Young Adult
15.
Am J Hum Genet ; 95(4): 445-53, 2014 Oct 02.
Article in English | MEDLINE | ID: mdl-25262649

ABSTRACT

Ethnic-specific differences in minor allele frequency impact variant categorization for genetic screening of nonsyndromic hearing loss (NSHL) and other genetic disorders. We sought to evaluate all previously reported pathogenic NSHL variants in the context of a large number of controls from ethnically distinct populations sequenced with orthogonal massively parallel sequencing methods. We used HGMD, ClinVar, and dbSNP to generate a comprehensive list of reported pathogenic NSHL variants and re-evaluated these variants in the context of 8,595 individuals from 12 populations and 6 ethnically distinct major human evolutionary phylogenetic groups from three sources (Exome Variant Server, 1000 Genomes project, and a control set of individuals created for this study, the OtoDB). Of the 2,197 reported pathogenic deafness variants, 325 (14.8%) were present in at least one of the 8,595 controls, indicating a minor allele frequency (MAF) > 0.00006. MAFs ranged as high as 0.72, a level incompatible with pathogenicity for a fully penetrant disease like NSHL. Based on these data, we established MAF thresholds of 0.005 for autosomal-recessive variants (excluding specific variants in GJB2) and 0.0005 for autosomal-dominant variants. Using these thresholds, we recategorized 93 (4.2%) of reported pathogenic variants as benign. Our data show that evaluation of reported pathogenic deafness variants using variant MAFs from multiple distinct ethnicities and sequenced by orthogonal methods provides a powerful filter for determining pathogenicity. The proposed MAF thresholds will facilitate clinical interpretation of variants identified in genetic testing for NSHL. All data are publicly available to facilitate interpretation of genetic variants causing deafness.


Subject(s)
Ethnicity/genetics , Evolution, Molecular , Exome/genetics , Genetic Variation/genetics , Hearing Loss/genetics , Hearing Loss/pathology , Case-Control Studies , Connexin 26 , Connexins , Gene Frequency , Genome, Human/genetics , Genome-Wide Association Study , Humans , Phylogeny
17.
Am J Med Genet A ; 158A(10): 2485-92, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22903915

ABSTRACT

Hearing loss is the most common sensory disorder worldwide and affects 1 of every 500 newborns. In developed countries, at least 50% of cases are genetic, most often resulting in nonsyndromic deafness (70%), which is usually autosomal recessive (∼80%). Although the cause of hearing loss is heterogeneous, mutations in GJB2 gene at DFNB1 locus are the major cause of autosomal recessive nonsyndromic hearing loss (ARNSHL) in many populations. Our previous study showed that mutations of GJB2 gene do not contribute to the major genetic load of deafness in the Iranian population (∼16%). Therefore, to define the importance of other genes in contributing to an ARNSHL phenotype in the Iranian population, we used homozygosity mapping to identify regions of autozygosity-by-descent in 144 families which two or more progeny had ARNSHL but were negative for GJB2 gene mutations. Using flanking or intragenic short-tandem repeat markers for 33 loci we identified 33 different homozygous variations in 10 genes, of which 9 are novel. In aggregate, these data explain ∼40% of genetic background of ARNHSL in the Iranian population.


Subject(s)
Genes, Recessive , Hearing Loss, Sensorineural/epidemiology , Hearing Loss, Sensorineural/genetics , Homozygote , Microsatellite Repeats/genetics , Chromosome Mapping , Connexin 26 , Connexins , Family , Humans , Iran/epidemiology , Mutation
18.
Am J Med Genet A ; 158A(8): 1857-64, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22736430

ABSTRACT

MYO15A is located at the DFNB3 locus on chromosome 17p11.2, and encodes myosin-XV, an unconventional myosin critical for the formation of stereocilia in hair cells of cochlea. Recessive mutations in this gene lead to profound autosomal recessive nonsyndromic hearing loss (ARNSHL) in humans and the shaker2 (sh2) phenotype in mice. Here, we performed a study on 140 Iranian families in order to determine mutations causing ARNSHL. The families, who were negative for mutations in GJB2, were subjected to linkage analysis. Eight of these families showed linkage to the DFNB3 locus, suggesting a MYO15A mutation frequency of 5.71% in our cohort of Iranian population. Subsequent sequencing of the MYO15A gene led to identification of 7 previously unreported mutations, including 4 missense mutations, 1 nonsense mutation, and 2 deletions in different regions of the myosin-XV protein.


Subject(s)
Deafness/genetics , Genes, Recessive , Mutation , Myosins/genetics , Chromosome Mapping , Chromosomes, Human, Pair 17 , Connexin 26 , Connexins , Female , Humans , Iran , Male , Pedigree
19.
Int J Pediatr Otorhinolaryngol ; 76(8): 1164-74, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22695344

ABSTRACT

OBJECTIVE: Mutations in GJB2, encoding connexin 26 (CX26), are causally related to autosomal recessive form of non-syndromic hearing loss (NSHL) at the DFNB1 locus and autosomal dominant NSHL at the DFNA3 locus. In this study, we investigated the prevalence of GJB2 mutations in the Iranian deaf population. METHODS: A total of 2322 deaf probands presenting the ethnically diverse Iranian population were screened for variants in GJB2. All persons were first screened for the c.35delG mutation, as this variant is the most prevalent GJB2-deafness causing mutation in the Iranian population. In all persons carrying zero or one c.35delG allele, exons 1 and 2 were then sequenced. RESULTS: In total, 374 (~16%) families segregated GJB2-related deafness caused by 45 different mutations and 5 novel variants. The c.35delG mutation was most commonly identified and accounts for ~65% of the GJB2 mutations found in population studied. CONCLUSION: Our data also show that there is a gradual decrease in the frequency of the c.35delG mutation and of GJB2-related deafness in general in a cline across Iran extending from the northwest to southeast.


Subject(s)
Connexins/genetics , Hearing Loss/genetics , Mutation , Connexin 26 , Consanguinity , DNA Mutational Analysis , Hearing Loss/epidemiology , Humans , Iran/epidemiology , Polymorphism, Genetic , Prevalence
20.
Int J Pediatr Otorhinolaryngol ; 76(2): 268-71, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22172221

ABSTRACT

OBJECTIVE: Hereditary hearing impairment is a genetically heterogeneous disorder. In spite of this, mutations in the GJB2 gene, encoding connexin 26 (Cx26), are a major cause of nonsyndromic recessive hearing loss in many countries and are largely dependent on ethnic groups. The purpose of our study was to characterize the type and prevalence of GJB2 mutations among Azeri population of Iran. METHODS: Fifty families presenting autosomal recessive nonsyndromic hearing loss from Ardabil province of Iran were studied for mutations in GJB2 gene. All DNA samples were screened for c.35delG mutation by ARMS PCR. Samples from patients who were normal for c.35delG were analyzed for the other variations in GJB2 by direct sequencing. In the absence of mutation detection, GJB6 was screened for the del(GJB6-D13S1830) and del(GJB6-D13S1854). RESULT: Thirteen families demonstrated alteration in the Cx26 (26%). The 35delG mutation was the most common one, accounting for 69.2% (9 out of 13 families). All the detected families were homozygous for this mutation. Two families were homozygous for delE120 and 299-300delAT mutations. We also identified a novel mutation: c.463-464 delTA in 2 families resulting in a frame shift mutation. CONCLUSION: Our results suggest that c.35delG mutation in the GJB2 gene is the most important cause of GJB2 related deafness in Iranian Azeri population.


Subject(s)
Arabs/genetics , Connexins/genetics , Genetic Predisposition to Disease/epidemiology , Genetic Testing/methods , Hearing Loss, Sensorineural/ethnology , Hearing Loss, Sensorineural/genetics , Mutation , Azerbaijan/ethnology , Case-Control Studies , Connexin 26 , Female , Genes, Recessive , Hearing Loss, Sensorineural/diagnosis , Homozygote , Humans , Iran/epidemiology , Male , Pedigree , Polymerase Chain Reaction/methods , Prevalence
SELECTION OF CITATIONS
SEARCH DETAIL
...