Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Cancers (Basel) ; 14(17)2022 Aug 31.
Article in English | MEDLINE | ID: mdl-36077794

ABSTRACT

Pancreatic cancer (PC) remains the seventh leading cause of cancer-related deaths worldwide and the third in the United States, making it one of the most lethal solid malignancies. Unfortunately, the symptoms of this disease are not very apparent despite an increasing incidence rate. Therefore, at the time of diagnosis, 45% of patients have already developed metastatic tumours. Due to the aggressive nature of the pancreatic tumours, local interventions are required in addition to first-line treatments. Locoregional interventions affect a specific area of the pancreas to minimize local tumour recurrence and reduce the side effects on surrounding healthy tissues. However, compared to the number of new studies on systemic therapy, very little research has been conducted on localised interventions for PC. To address this unbalanced focus and to shed light on the tremendous potentials of locoregional therapies, this work will provide a detailed discussion of various localised treatment strategies. Most importantly, to the best of our knowledge, the aspect of localised drug delivery systems used in PC was unprecedentedly discussed in this work. This review is meant for researchers and clinicians considering utilizing local therapy for the effective treatment of PC, providing a thorough guide on recent advancements in research and clinical trials toward locoregional interventions, together with the authors' insight into their potential improvements.

2.
Materials (Basel) ; 15(9)2022 May 08.
Article in English | MEDLINE | ID: mdl-35591708

ABSTRACT

The objective of this study was to enhance the corneal permeation of gatifloxacin (GTX) using cubosomal nanoparticle as a delivery system. Cubosomal nanoparticle loaded with GTX was prepared and subjected for in vitro and in vivo investigations. The prepared GTX-loaded cubosomal particles exhibited nanoparticle size of 197.46 ± 9.40 nm and entrapment efficiency of 52.8% ± 2.93. The results of ex vivo corneal permeation of GTX-loaded cubosomal dispersion show approximately 1.3-fold increase compared to GTX aqueous dispersion. The incorporation of GTX into cubosomal particles resulted in a fourfold reduction in the minimum inhibitory concentration (MIC) value for the GTX cubosomal particles relative to GTX aqueous dispersion. Furthermore, the enhanced corneal penetration of GTX-loaded cubosomal dispersion compared was evident by a significant decrease in the area % of corneal opacity in MRSA infected rats. Moreover, these results were confirmed by photomicrographs of histological structures of corneal tissues from rats treated with GTX-cubosomal dispersion which did not present any change compared to that of the normal rat corneas. In conclusion, treatment of ocular bacterial infections and reduction in the probability of development of new resistant strains of MRSA could be accomplished with GTX-loaded cubosomal nanoparticles.

3.
Pharmaceuticals (Basel) ; 14(8)2021 Aug 09.
Article in English | MEDLINE | ID: mdl-34451883

ABSTRACT

In this study, gliclazide-loaded cubosomal particles were prepared for improving the oral bioavailability and antidiabetic activity of gliclazide. Four formulations of gliclazide-loaded cubosomal nanoparticles dispersions were prepared by the emulsification method using four different concentrations of glyceryl monooleate (GMO) and poloxamer 407 (P407) as the stabilizer. The prepared formulations were in vitro and in vivo evaluated. In vitro, the prepared gliclazide-loaded cubosomal dispersions exhibited disaggregated regular poly-angular particles with a nanometer-sized particle range from 220.60 ± 1.39 to 234.00 ± 2.90 nm and entrapped 73.84 ± 3.03 to 88.81 ± 0.94 of gliclazide. In vitro gliclazide release from cubosomal nanoparticles revealed an initially higher drug release during the first 2 h in acidic pH medium; subsequently, a comparatively higher drug release in alkaline medium relative to gliclazide suspension was observed. An in vivo absorption study in rats revealed a two-fold increase in the bioavailability of gliclazide cubosomal formulation relative to plain gliclazide suspension. Moreover, the study of in vivo hypoglycemic activity indicated that a higher percentage reduction in glucose level was observed after the administration of gliclazide cubosomal nanoparticles to rats. In conclusion, gliclazide-loaded cubosomal nanoparticles could be a promising delivery system for improving the oral absorption and antidiabetic activity of gliclazide.

4.
Vaccines (Basel) ; 10(1)2021 Dec 29.
Article in English | MEDLINE | ID: mdl-35062700

ABSTRACT

INTRODUCTION: Despite global efforts to contain the illness, COVID-19 continues to have severe health, life, and economic repercussions; thus, maintaining vaccine development is mandatory. Different directions concerning COVID-19 vaccines have emerged as a result of the vaccine's unpredictability. AIMS: To study the determinants of the attitudes of healthcare workers (HCWs) to receiving or refusing to receive the vaccine. METHODS: The current study adopted an interviewed questionnaire between June and August 2021. A total of 341 HCWs currently working at Assiut University hospitals offered to receive the vaccine were included. RESULTS: Only half of the HCWs (42%) accepted the COVID-19 vaccine. The most common reason that motivated the HCWs was being more susceptible than others to infection (71.8%). On other hand, the common reasons for refusing included: previously contracted the virus (64.8%); did not have time (58.8%); warned by a doctor not to take it (53.8%). Nearly one-third of nonaccepting HCWs depended on television, the Internet, and friends who refused the vaccine for information (p < 0.05). In the final multivariate regression model, there were six significant predictors: sex, job category, chronic disease, being vaccinated for influenza, and using Assiut University hospital staff and the Ministry of Health as sources of information (p < 0.05). CONCLUSION: Misinformation and negative conceptions are still barriers against achieving the desired rate of vaccination, especially for vulnerable groups such as HCWs.

5.
Drug Dev Ind Pharm ; 46(10): 1676-1683, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32892654

ABSTRACT

OBJECTIVE: The aim of this work was to investigate dry co-grinding of nateglinide with meglumine for enhanced dissolution rate of nateglinide. The study was extended to investigate the effect of this dissolution enhancement on the hypoglycemic effect of the drug in diabetic rats. METHODS: Nateglinide was subjected to dry co-grinding with increasing proportions of meglumine to prepare products containing the drug with meglumine at 1:1, 1:2, and 1:3 molar ratios. These products were evaluated using combined instrumental analysis which employed Fourier transform infrared spectroscopy (FTIR), differential thermal analysis (DTA), and X-ray diffraction (XRD). Drug dissolution was also monitored before and after processing with and without meglumine. The optimum ratio was used to assess the effect of dissolution enhancement on the hypoglycemic effect of nateglinide on diabetic rats. The unprocessed nateglinide was used as control. RESULTS: Co-grinding of nateglinide resulted in changes in the FTIR spectral patterns of nateglinide and meglumine. The changes suggested the formation of amide bond between both compounds at 1:1 molar ratio. The new species was confirmed by DTA and XRD. This species exhibited fast dissolution of nateglinide after incorporation of higher proportions of meglumine. Co-grinding was essential as indicated from slower dissolution from physical mixture containing the highest proportion of meglumine. Enhanced dissolution was reflected in vivo as improved rate and extent of hypoglycemia. CONCLUSION: Dry co-grinding of nateglinide with meglumine developed new species which liberated nateglinide rapidly and enhanced the rate and extent of hypoglycemia of nateglinide.


Subject(s)
Diabetes Mellitus, Experimental , Meglumine , Nateglinide/chemistry , Animals , Diabetes Mellitus, Experimental/drug therapy , Rats , Solubility , Spectroscopy, Fourier Transform Infrared , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...